Abstract:
A user interface for operation of a scanning electron microscope device that combines lower magnification reference images and higher magnification images on the same screen to make it easier for a user who is not used to the high magnification of electron microscopes to readily determine where on the sample an image is being obtained and to understand the relationship between that image and the rest of the sample. Additionally, other screens, such as, for example, an archive screen and a settings screen allow the user to compare saved images and adjust the settings of the system, respectively.
Abstract:
A method for adjusting or aligning one or more optical elements in a Transmission Electron Microscope (TEM) is disclosed. The TEM is equipped with an objective lens for guiding a beam of electrons to a sample, a diffraction plane in which at least a beam of unscattered electrons is focused and a structure to enhance the Contrast Transfer Function (CTF) which is situated in the diffraction plane or an image thereof.
Abstract:
The invention relates to an apparatus for evacuating samples. A sample 4 is hereby placed in a cavity 3 of a sheet 1 with a smooth surface 2. A sole plate 5 Is placed upon this smooth surface 2, whereby the smooth surface 2 and the sole plate 5 placed thereupon together form a vacuum seal. The sole plate 5, upon which a vacuum column 6 is mounted, can be slid across the smooth surface 2. By sliding the sole plate 5 over the cavity 4, the cavity 4 is evacuated in several steps.In an embodiment of the invention, the vacuum column 6 takes the form of an ESEM (Environmental Scanning Electron Microscope). In this way, it is possible to inspect the evacuated sample 4 with the ESEM.
Abstract:
A cluster tool includes multiple tools for microscopic processing of a sample positioned around a rotatable base. A sample holder on the base rotates the sample between the working areas of the tools. A slidable vacuum seal maintains a vacuum in a sample chamber for tools that require a vacuum.
Abstract:
A compact electron microscope uses a removable sample holder having walls that form a part of the vacuum region in which the sample resides. By using the removable sample holder to contain the vacuum, the volume of air requiring evacuation before imaging is greatly reduced and the microscope can be evacuated rapidly. In a preferred embodiment, a sliding vacuum seal allows the sample holder to be positioned under the electron column, and the sample holder is first passed under a vacuum buffer to remove air in the sample holder.
Abstract:
A method for adjusting or aligning one or more optical elements in a Transmission Electron Microscope (TEM) is disclosed. The TEM is equipped with an objective lens for guiding a beam of electrons to a sample, a diffraction plane in which at least a beam of unscattered electrons is focused and a structure to enhance the Contrast Transfer Function (CTF) which is situated in the diffraction plane or an image thereof.
Abstract:
A compact electron microscope uses a removable sample holder having walls that form a part of the vacuum region in which the sample resides. By using the removable sample holder to contain the vacuum, the volume of air requiring evacuation before imaging is greatly reduced and the microscope can be evacuated rapidly. In a preferred embodiment, a sliding vacuum seal allows the sample holder to be positioned under the electron column, and the sample holder is first passed under a vacuum buffer to remove air in the sample holder.
Abstract:
A user interface for operation of a scanning electron microscope device that combines lower magnification reference images and higher magnification images on the same screen to make it easier for a user who is not used to the high magnification of electron microscopes to readily determine where on the sample an image is being obtained and to understand the relationship between that image and the rest of the sample. Additionally, other screens, such as, for example, an archive screen and a settings screen allow the user to compare saved images and adjust the settings of the system, respectively.
Abstract:
A compact electron microscope uses a removable sample holder having walls that form a part of the vacuum region in which the sample resides. By using the removable sample holder to contain the vacuum, the volume of air requiring evacuation before imaging is greatly reduced and the microscope can be evacuated rapidly. In a preferred embodiment, a sliding vacuum seal allows the sample holder to be positioned under the electron column, and the sample holder is first passed under a vacuum buffer to remove air in the sample holder.
Abstract:
The invention describes a particle-optical apparatus arranged to focus a beam (1) of electrically charged particles with the aid of two particle-optical lens systems (10, 20). The lens action is achieved by magnetic fields, which fields are generated by permanent-magnetic materials (13, 23). In contrast to magnetic lenses equipped with a coil, it is not easy in the case of lenses equipped with permanent-magnetic material to alter the focusing magnetic field with the aim of altering the optical power. In an apparatus according to the invention, the optical power of the lens systems is altered by altering the energy with which the beam (1) traverses the lens systems (10, 20). This can easily happen by altering the voltage of electrical power supplies (14, 24).