Abstract:
A light-emitting device (1) includes a base (10), a light reflecting member (11) placed on the base (10), a case (12) surrounding the light reflecting member (11), and a plurality of light-emitting elements (13) arranged on the inner surface of the case (12). The light reflecting member (11) reflects light emitted from an emission source including the light-emitting elements (13) toward an opening (12a) of the case (12). In the light-emitting device (1), since a plurality of light-emitting elements (13) can be arranged three-dimensionally, the size of the light-emitting device can be reduced easily. Moreover, the light reflecting member (11) reflects light emitted from the emission source including the light-emitting elements (13) toward the opening (12a) of the case (12), so that the light-emitting device can have high brightness.
Abstract:
A circuit board includes a film substrate, a plurality of wiring layers arranged in order on the film substrate, and bumps formed on the wiring layers, respectively. Each of the bumps is provided across a longitudinal direction of a corresponding one of the wiring layers so as to extend over regions on both sides of the wiring layer above the insulating substrate, and a cross sectional shape of the bump taken in the width direction of the wiring layer is such that a central portion is higher than portions on both sides of the central portion. Accordingly, the bumps formed on the wiring layers can be held with strength sufficient for practical use against the force applied in the lateral direction.
Abstract:
A circuit board including a flexible insulating substrate, a plurality of conductive wirings placed in line on the flexible insulating substrate, and bumps provided at end portions of the respective conductive wirings positioned in a region for mounting a semiconductor chip is provided. The circuit board further includes an auxiliary conductive wiring positioned at an outermost corner of the region for mounting the semiconductor chip, being adjacent to and an outside the outermost conductive wiring, and an auxiliary bump formed on the auxiliary conductive wiring in line with the bumps on the conductive wirings. One end portion of the auxiliary conductive wiring is terminated at a position in the outside vicinity of the auxiliary bump in an outward direction of the region for mounting the semiconductor chip, and the auxiliary conductive wiring is bent at the other end portion positioned inside the auxiliary bump in an inward direction of the region for mounting the semiconductor chip, and connected to an end of the adjacent outermost conductive wiring. A break in the outermost conductive wiring, which is caused by concentrated stress at the time of joining the bumps of the circuit board and electrode pads of the semiconductor chip, can be suppressed.
Abstract:
A circuit board includes a film substrate, a plurality of wiring layers arranged in order on the film substrate, and bumps formed on the wiring layers, respectively. Each of the bumps is provided across a longitudinal direction of a corresponding one of the wiring layers so as to extend over regions on both sides of the wiring layer above the insulating substrate, and a cross sectional shape of the bump taken in the width direction of the wiring layer is such that a central portion is higher than portions on both sides of the central portion. Accordingly, the bumps formed on the wiring layers can be held with strength sufficient for practical use against the force applied in the lateral direction.
Abstract:
An improved scroll compressor comprises a fixed scroll and an orbiting scroll, as well as an Oldham's coupling which enables the orbiting scroll to have a orbital movement. The Oldham's ring of the Oldham's coupling is so formed that its sliding surfaces for counterpart members to slide thereon are formed by a base material containing silicon particles, while the surface of each silicon particle (remaining on the base material's surface serving as a slidable surface for counterpart members to slide thereon) is formed into a flat surface. In practice, a ratio of silicon portions formed into flat surfaces to an entire sliding area of the Oldham's coupling is in a range of 3% to 20%, preferably 5% to 15%. With the use of the scroll compressor of the present invention, it is possible to improve the wear resistance of the Oldham's ring of the Oldham's coupling and its counterpart members in the scroll compressor.
Abstract:
A spool of a lock-up control valve has a first effective area exposed to a release pressure which is supplied to a release chamber of the lock-up clutch and a second larger effective area which is exposed to the apply pressure which is supplied to an apply chamber. When acceleration is demanded when the lock-up clutch is in one of slip or fully lock-up modes and a sudden demand for acceleration is made, the pressure differential between the apply and release pressures is reduced below the normal level for a predetermined period of time.
Abstract:
A shift control system for an automatic power transmission employs an electrically operable timing control valve. The timing control valve is disposed in a second pressure line connected to a second frictional element, which second pressure line is connected to a first pressure line connected to a first frictional element. The timing control valve is designed to be switched between a first position for shutting-off the fluid communication between the first pressure line to the second frictional element and a second position for establishing fluid communication therebetween. The timing control valve is operated by a control signal from an electric or electronic control unit which provides the control signal for the timing control valve for operating the latter with a given lag time from starting of variation of pressure in the first frictional element.
Abstract:
An air conditioner provided with a refrigerant circuit formed by connecting with piping a refrigerant compressor, a condenser, an expansion means and an evaporator, an inverter power supply means for controlling the rotational speed of an electric motor for driving the refrigerant compressor, a load detector, and a controller for controlling the inverter power supply means on the basis of an output from the load detector. A refrigerant flow passage controlling mechanism is provided to change the rate at which the refrigerant flows through the condenser on the basis of a control command from the controller, thereby making it possible to reduce or increase the discharge rate without extending the range of changes in the rotational speed of the compressor. The compressor can be controlled according to a wide range of changes in the load to operate with an operation range which ensures high efficiency of the compressor operation.
Abstract:
A flexible insulating base, a plurality of conductor wirings aligned on the flexible insulating base, and bump electrodes provided respectively in end portions of the plurality of conductor wirings in a region where a semiconductor chip is to be placed are provided. The semiconductor chip is mounted on the conductor wirings by bonding electrode pads formed on the semiconductor chip to the bump electrodes. An auxiliary conductor wiring formed similarly to the conductor wirings is provided on the insulating base, and an auxiliary bump electrode formed similarly to the bump electrodes is provided on the auxiliary conductor wiring, so that the electrode pads formed on the semiconductor chip can be registered with respect to the bump electrodes on the conductor wirings by positioning the semiconductor chip with reference to the auxiliary bump electrode. It is possible to configure a wiring board having register marks capable of positioning electrode pads of a semiconductor chip with respect to bump electrodes with high accuracy.
Abstract:
In a film substrate (FB) including a film base material (1) and conductor wiring (23) that is formed on the film base material (1), the conductor wiring (23) is arranged such that the conductor wiring thickness of an external connection portion on the film substrate to which another panel or substrate is connected is thicker than the conductor wiring thickness of conductor wiring portions (bent portions) (25) at other positions.