Abstract:
A method for transferring objects onto a substrate, or running substrate, the objects to be transferred being placed in a transfer area containing a carrier liquid forming a conveyor, the objects being held by a compact film of particles floating on the carrier liquid of the transfer area, within which the objects are displaced with the film of particles to be transferred onto the substrate, making at least one connector on at least one of the objects, the connector being made by a substance comprising a polymerizable compound, put in contact with the object arranged within the transfer area, and then by polymerization of the substance.
Abstract:
The invention concerns a method for producing a chromatography analysis column, the resulting column, and a device comprising such a column. The method according to the invention comprises the following steps: (a) depositing on the flat surface of a substrate a first layer of particles which are intended to form the stationary phase; (b) depositing on the layer at least one second layer of compactly assembled particles; (c) impregnating the first and second layers with a light radiation-sensitive material, to form at least two compactly assembled particle layers impregnated with sensitive material; (d) insolating these layers in the regions corresponding to the desired internal shape of the chromatography analysis column, if the light radiation-sensitive material behaves like a positive resin, or outlining this internal shape if the light radiation-sensitive material behaves like a negative photosensitive resin; (e) eliminating either the regions insolated in step (d) if the light radiation-sensitive layer behaves like a positive photosensitive resin, or the regions not insolated in step (d) if the light radiation-sensitive material behaves like a negative photosensitive resin; and (f) covering and sealing the structure obtained in step (e) with a cover covered on the face facing the layers with at least one layer of compactly assembled particles which are identical to or different from those deposited on the substrate surface. The invention is used in particular in the field of chemical analysis.
Abstract:
A method for characterizing a diffracting surface having a structure made of crystalline grain is provided. The method includes the steps of: a) sequentially illuminating the surface with a plurality of light beams (Fi) having propagation directions that are angled at a same angle Θ relative to the normal of the surface and the projections, onto the surface, of which form different azimuth angles ψi relative to a reference direction; b) acquiring an image of the surface corresponding to each of the light beams; and c) digitally processing the images such as to obtain information on at least one property of the surface selected among: the grain structure, the texture and the sequencing rate thereof. The invention also relates to an optical head and to an apparatus for implementing such a method.
Abstract:
An installation for forming a compact film of particles on a surface of a carrier fluid, including a zone acting as a reservoir of carrier fluid, an inclined ramp, a particle storage and transfer zone, a mechanism moving the carrier fluid, a mechanism for dispensing the particles in solution, configured to dispense the particles on the surface of the carrier fluid in the zone acting as a reservoir, and a structure for deflecting the particles configured to favor, along a transverse direction of the installation, spreading of the particles at the outlet of the zone acting as a reservoir. The structure for deflecting particles is permeable to the carrier fluid.
Abstract:
The present invention relates to a process for the preparation of boron carbide nanoparticles, characterized in that it comprises at least the stages consisting in: (i) interacting boric acid, boron oxide B2O3 or a boric acid ester of B(OR)3 type, with R, which are identical or different, representing C1-4-alkyl groups, with 1 to 2 molar equivalents of at least one C2 to C4 polyol, under conditions favorable to the formation of a boron alkoxide powder; (ii) interacting, in an aqueous medium, the boron alkoxide powder obtained on conclusion of stage (i) with an effective amount of one or more completely hydrolyzed polyvinyl alcohols, with a molar mass of between 10 000 and 80 000 g.mol−1, under conditions favorable to the formation of a crosslinked PVA gel, and (iii) carrying out an oxidizing pyrolysis of the crosslinked gel formed on conclusion of the preceding stage (ii), under conditions favorable to the formation of the CB4 nanoparticles.
Abstract:
The invention concerns a method for producing a chromatography analysis column, the resulting column, and a device comprising such a column. The method according to the invention comprises the following steps: (a) depositing on the flat surface of a substrate a first layer of particles which are intended to form the stationary phase; (b) depositing on the layer at least one second layer of compactly assembled particles; (c) impregnating the first and second layers with a light radiation-sensitive material, to form at least two compactly assembled particle layers impregnated with sensitive material; (d) insolating these layers in the regions corresponding to the desired internal shape of the chromatography analysis column, if the light radiation-sensitive material behaves like a positive resin, or outlining this internal shape if the light radiation-sensitive material behaves like a negative photosensitive resin; (e) eliminating either the regions insolated in step (d) if the light radiation-sensitive layer behaves like a positive photosensitive resin, or the regions not insolated in step (d) if the light radiation-sensitive material behaves like a negative photosensitive resin; and (f) covering and sealing the structure obtained in step (e) with a cover covered on the face facing the layers with at least one layer of compactly assembled particles which are identical to or different from those deposited on the substrate surface. The invention is used in particular in the field of chemical analysis.
Abstract:
A method for producing an assembly of particles bound by a substrate, including: making a compact film of solid particles floating on a carrier liquid, the solid particles potentially holding objects between them; spraying particles onto a face of the compact film opposite to the one immersed in a carrier liquid, to create a substrate-forming-skin adhering to the solid particles; and extracting an obtained assembly outside the carrier liquid.
Abstract:
A process for depositing a compact film of particles on an internal surface of a part, including: a) placing the part in a carrier liquid; b) generating a carrier liquid stream in a hollow of the part towards a surface of the carrier liquid, to create a protuberance; c) dispensing the particles to form a compact film floating on the liquid between a contact line and an upstream front of particles; and d) transferring the film onto the internal surface by operating a relative displacement between the part and the surface of the carrier liquid, while continuing dispensing the particles on the upstream front.
Abstract:
An installation for forming a compact film of particles on a surface of a carrier fluid, including: a zone acting as a reservoir of carrier fluid; an inclined ramp; a particle storage and transfer zone situated extending from the inclined ramp; a mechanism moving the fluid; a mechanism dispensing the particles in solution, configured to dispense the particles at the surface of the carrier on the surface of the carrier fluid in the zone acting as a reservoir; and a mechanism raising a level of the carrier fluid by capillary effect, arranged at a junction between the zone acting as a reservoir and the inclined ramp.
Abstract:
The invention concerns a method for producing a chromatography-enrichment column, the method comprising the following steps: (a) depositing at least one layer of desired particles, which may be identical or different, and are intended to constitute the stationary phase, in a compact assembly, on the flat surface of a substrate; (b) crosslinking the layer in at least the regions corresponding to the desired shape of the enrichment column to be obtained; (c) impregnating the layer with a light radiation-sensitive material; (d) insolating the layer obtained in step (c) so as to form insolated regions of which the shape corresponds to the desired internal shape of the enrichment column, if the light radiation-sensitive material behaves like a positive resin or to form non-insolated regions of which the shape corresponds to the desired internal shape of the enrichment column if the light radiation-sensitive material behaves like negative resin; and (e) eliminating the light radiation-sensitive material in the zones corresponding to the internal shape of the enrichment column. The invention is used in particular in the field of chemical analysis.