Abstract:
Methods and systems for generating ions from a liquid sample for mass spectrometry are provided herein. In various aspects, the methods and systems can enhance the break-up of a jet of the liquid sample upon injection into an ionization chamber. In some aspects, methods and systems perturb the liquid sample prior to discharge to increase the internal energy of the sample so as to enhance the formation of liquid droplets when the liquid sample is injected into the ionization chamber.
Abstract:
An electrospray ion source method and system is provided for detecting emitter failure comprising a liquid chromatography column suitable for chromatographic separation of a sample. The column can have an inlet for receiving the sample; and an outlet for ejecting the sample. A make-up flow channel is provided for introducing make-up flow of liquid to the sample post-column, wherein the make-up flow normalizes the spray current. An electrospray ionization source is provided having one or more electrospray ionization emitter nozzles for receiving the make-up flow containing sample. A power supply can provide a voltage to the one or more emitter nozzles, and a measurement device can measure and monitor the spray current.
Abstract:
In accordance with various aspects of the present teachings, methods and systems for differential mobility spectrometry are provided herein for simultaneously applying a plurality of SV/CV combinations to subsets of a population of ions generated by one or more ion sources. In various aspects, DMS devices in accordance with the present teachings can provide multiple channels (e.g., 2, 3, 4, 5, 6, or more) for operating in parallel and within which different electrical fields can be generated for filtering sample ions within those channels based on the characteristic mobilities of the ions within each channel. In this manner, devices and methods in accordance with the present teachings can, in various aspects, enable improved duty cycle, increased throughput, decreased sample consumption, increased sensitivity for a plurality of ions of interest, and/or increased resolution.
Abstract:
Methods and systems for generating ions from a liquid sample for mass spectrometry are provided herein. In various aspects, the methods and systems can enhance the break-up of a jet of the liquid sample upon injection into an ionization chamber. In some aspects, methods and systems perturb the liquid sample prior to discharge to increase the internal energy of the sample so as to enhance the formation of liquid droplets when the liquid sample is injected into the ionization chamber.
Abstract:
A system and method are provided for loading a sample into an analytical instrument using acoustic droplet ejection (“ADE”) in combination with a continuous flow sampling probe. An acoustic droplet ejector is used to eject small droplets of a fluid sample containing an analyte into the sampling tip of a continuous flow sampling probe, where the acoustically ejected droplet combines with a continuous, circulating flow stream of solvent within the flow probe. Fluid circulation within the probe transports the sample through a sample transport capillary to an outlet that directs the analyte away from the probe to an analytical instrument, e.g., a device that detects the presence, concentration quantity, and/or identity of the analyte. When the analytical instrument is a mass spectrometer or other type of device requiring the analyte to be in ionized form, the exiting droplets pass through an ionization region, e.g., an electrospray ion source, prior to entering the mass spectrometer or other analytical instrument. The method employs active flow control and enables real-time kinetic measurements.
Abstract:
A system and method are provided for loading a sample into an analytical instrument using acoustic droplet ejection (“ADE”) in combination with a continuous flow sampling probe. An acoustic droplet ejector is used to eject small droplets of a fluid sample containing an analyte into the sampling tip of a continuous flow sampling probe, where the acoustically ejected droplet combines with a continuous, circulating flow stream of solvent within the flow probe. Fluid circulation within the probe transports the sample through a sample transport capillary to an outlet that directs the analyte away from the probe to an analytical instrument, e.g., a device that detects the presence, concentration quantity, and/or identity of the analyte. When the analytical instrument is a mass spectrometer or other type of device requiring the analyte to be in ionized form, the exiting droplets pass through an ionization region, e.g., an electrospray ion source, prior to entering the mass spectrometer or other analytical instrument. The method employs active flow control and enables real-time kinetic measurements.
Abstract:
Systems and methods are disclosed for timed introduction of samples into a mass spectrometer may include receiving a plurality of sample ion pulses in a mass spectrometer from a sampling interface, where the sample ion pulses are received at a pre-determined time pattern; detecting the received sample ion pulses to generate a signal; isolating an analyte signal by signal conditioning the generated signal based on the pre-determined time pattern; and identifying a presence of an analyte based on the isolated analyte signal. The signal conditioning may include pulse-based averaging based on the pre-determined time pattern or may include converting the generated signal to a frequency-domain signal and calculating a modulus to isolate the analyte signal. The pre-determined time pattern may be periodic where the signal conditioning comprises performing a Fourier Transform on the signal to convert it to a frequency-domain signal.
Abstract:
An electrospray ionization emitter according to various aspects described herein can include an emitter body formed using fused silica. The emitter body can comprise a fluid conduit segment that includes a liquid connection end that has been coated with polyetheretherketone (PEEK) on at least one portion thereof. The liquid connection end can have a first outer diameter that is configured to be connected to a sample source to receive a sample liquid for ionization therefrom. The emitter body can further comprise an ionization discharge segment that is fluidly connected to the fluid conduit segment. The ionization discharge segment can have an ionization discharge end that is coated with a conductive material on at least one portion thereof and configured to have a second outer diameter that allows ionization of the liquid sample.
Abstract:
A system and method are provided for loading a sample into an analytical instrument using acoustic droplet ejection (“ADE”) in combination with a continuous flow sampling probe. An acoustic droplet ejector is used to eject small droplets of a fluid sample containing an analyte into the sampling tip of a continuous flow sampling probe, where the acoustically ejected droplet combines with a continuous, circulating flow stream of solvent within the flow probe. Fluid circulation within the probe transports the sample through a sample transport capillary to an outlet that directs the analyte away from the probe to an analytical instrument, e.g., a device that detects the presence, concentration quantity, and/or identity of the analyte. When the analytical instrument is a mass spectrometer or other type of device requiring the analyte to be in ionized form, the exiting droplets pass through an ionization region, e.g., an electrospray ion source, prior to entering the mass spectrometer or other analytical instrument. The method employs active flow control and enables real-time kinetic measurements.
Abstract:
A system and method are provided for loading a sample into an analytical instrument using acoustic droplet ejection (“ADE”) in combination with a continuous flow sampling probe. An acoustic droplet ejector is used to eject small droplets of a fluid sample containing an analyte into the sampling tip of a continuous flow sampling probe, where the acoustically ejected droplet combines with a continuous, circulating flow stream of solvent within the flow probe. Fluid circulation within the probe transports the sample through a sample transport capillary to an outlet that directs the analyte away from the probe to an analytical instrument, e.g., a device that detects the presence, concentration quantity, and/or identity of the analyte. When the analytical instrument is a mass spectrometer or other type of device requiring the analyte to be in ionized form, the exiting droplets pass through an ionization region, e.g., an electrospray ion source, prior to entering the mass spectrometer or other analytical instrument. The method employs active flow control and enables real-time kinetic measurements.