Abstract:
An ion mobility spectrometer having an ion source for generating ions; an ion detector for recording ions, and a number of substantially flat diaphragm electrodes arranged substantially perpendicular to a straight system axis that passes through the apertures in said diaphragms, with the diaphragms being arranged in a series of cells with each cell including an entrances and an exit diaphragm and a short region in between. The exit diaphragm of one cell is identical to the entrance diaphragm of the next cell, and the cells of said ion mobility spectrometer are grouped into three parts: an ion-beam forming region, an ion analyzing region, and a decelerating ion gate.
Abstract:
A co-axial time-of-flight mass spectrometer having a longitudinal axis and first and second ion mirrors at opposite ends of the longitudinal axis. Ions enter the spectrometer along an input trajectory offset from the longitudinal axis and after one or more passes between the mirrors ions leave along an output trajectory offset from the longitudinal axis for detection by an ion detector. The input and output trajectories are offset from the longitudinal axis by an angle no greater than formula (I): where Dmin is the or the minimum transverse dimension of the ion mirror and L is the distance between the entrances of the ion mirrors.
Abstract:
A position sensitive fast timing detector for determining time-of-flight mass analysis and position of atomic particles includes a channel plate assembly for detecting the impact of one or more atomic particles a transforming them into one or more electron clouds. The electron cloud then passes through an electron detector which includes a meandric delay line located in front of a back plate. A second meandric delay line may also be utilized, wherein the second delay line is orthogonal with the first delay line. A grid may be placed between the first and second meandric delay lines to reduce cross-talk.
Abstract:
An arrangement and a process for adjusting imaging systems for bundles of charged particles, or for adjusting spectrometers for bundles of charged particles, are indicated, in which arrangement and process electric and/or magnetic correcting elements are used, which possess, in every case, a large number of electrodes and/or current conductors, which are arranged, symmetrically or asymmetrically, around the optical axis of the particle bundle, these electrodes being at potentials such that the resulting potentials V (r, .PHI.) at an azimuth angle (.PHI.) to a cylindrical surface at a radius (r) around an optical axis (Z) can be represented as the sum of V.sub.1 and V.sub.2, or, as the case may be, these current conductors carrying currents such that the magnitudes of the resulting currents I (r, .PHI.) at the azimuth angle (.PHI.), as defined above, can be represented as the sum of I.sub.1 and I.sub.2. The expressions V.sub.1, V.sub.2 and I.sub.1, I.sub.2 can, in their turn, be represented as sums, their addends being, respectively, of the type V.sub.1 =V.sub.1k sink.PHI., V.sub.2 =V.sub.2k cosk.PHI., and I.sub.1 =I.sub.1k sink.PHI. and I.sub.2 =I.sub.2k cosk.PHI., where k=1, 2, . . . P, with P representing the order of the multipole. The potentials and/or the currents are utilized, in this manner, to obtain superpositions of electric and/or magnetic dipoles, quadrupoles, hexapoles, etc.
Abstract:
An ion mobility spectrometer having an ion source for generating ions; an ion detector for recording ions, and a number of substantially flat diaphragm electrodes arranged substantially perpendicular to a straight system axis that passes through the apertures in said diaphragms, with the diaphragms being arranged in a series of cells with each cell including an entrances and an exit diaphragm and a short region in between. The exit diaphragm of one cell is identical to the entrance diaphragm of the next cell, and the cells of said ion mobility spectrometer are grouped into three parts: an ion-beam forming region, an ion analyzing region, and a decelerating ion gate.
Abstract:
A method for differential mobility separation of ions using digital-drive based high voltage fast switching electronics. The digital waveform delivered to the spectrometer is characterized by at least two substantially rectangular pulses of different amplitude and polarity. The control circuitry allows for waveform frequency, duty cycle and pulse amplitudes to be varied independently. Balanced as well as unbalanced asymmetric waveforms can be designed for optimum differential mobility separation of ions. The digital drive is designed for differential mobility spectrometers including parallel plate and segmented plate multipoles of planar symmetry, as well as multipoles of cylindrical symmetry, which may optionally be arranged in series. The use of the digital drive establishes alternating electric fields during which the displacement as a result of ion oscillation is determined by mobility coefficients.
Abstract:
A time-of-flight mass spectrometer (1) comprises an ion source a segmented linear ion device (10) for receiving sample ions supplied by the ion source and a time-of-flight mass analyser for analysing ions ejected from the segmented device. A trapping voltage is applied to the segmented device to trap ions initially into a group of two or more adjacent segments and subsequently to trap them in a region of the segmented device shorter than the group of segments. The trapping voltage may also be effective to provide a uniform trapping field along the length of the device (10).
Abstract:
A method for digitizing and displaying thermographic records of biological or technical structures which makes it possible to recognize abnormal temperature distributions even if they are very small or the corresponding regions differ only very slightly in their temperature value from the adjacent temperature values. In this method, the temperature values at each image point of a thermogram are digitized and the slope of the local change in temperature, i.e. the temperature gradient, is calculated for each image point on basis of its temperature and the measured temperature values of its neighboring points. For a selected image region the local distribution of the temperature gradients is displayed. Abnormal temperature distributions can be recognized from this display at places where large temperature gradients are present.The method is particularly advantageous for use in the field of medicine and serves there for the detection of carcinomas and particularly breast cancer.
Abstract:
A curtain-gas filter for a mass- or mobility-spectrometer that bars gases or vapors of a high-flux atmospheric pressure ion source, as we ions of high mobility and charged droplets, from entering an evacuated mass spectrometer or a mobility spectrometer that is at a lower pressure than the main filter volume of the curtain-gas filter. A portion of the ion-source buffer gas in the ion-source plume is sucked through an ion-source buffer gas inlet into the main filter volume of the curtain-gas filter, from where this ion-source gas is exhausted after a properly shaped electric field has pushed a large portion of the embedded ions into an externally provided stream of a clean buffer gas, which is sucked through a passage into a mass- or mobility-spectrometer that is at a lower pressure.
Abstract:
Ions and charged droplets move from the nozzle (6) towards the orifice (22) of a charged-particle transport device or the desolvation pipe (7). This particle motion is governed by the distribution of the pseudo-potential along particle trajectories. There are RF-voltages applied to neighboring electrodes (241-246) of the electrode array (24) cause the charged particles to substantially hover above the electrode array (24). Right before the ions come to the electrode array (24) they thus experience a repelling force “F” perpendicular to the surface of the electrode array (24). This force “F” causes an effective barrier (B) right before the electrode array (24) and consequently a pseudo-potential well (A) where the charged particles stop their motion parallel to the plume axis (D). Thus they accumulate around the center line (C) of this well (A). Applying additionally to the RF-potentials also DC-potentials to neighboring electrodes within the electrode array (24) small DC-fields can be formed within the well area (23). These additional DC-fields drive the charged particles towards the axis of symmetry (C) and thus towards the orifice (22) of a charged-particle transport device or the desolvation pipe (7). Thus, many of the charged particles which would normally impinge on the wall (21) around the orifice (22) can now be analyzed.