Abstract:
A method of three-dimensional imaging of the atomic environment of atoms near the surface of the sample involves forming a localized source electron diffraction pattern, detecting the intensity of the distribution of the pattern, and generating data corresponding to the intensity distribution. The intensity data is normalized and corrected for a phase shift error to produce data corresponding to a hologram. The process may be repeated at a several predetermined emitted electron energies, and the data at each energy is combined to yield a composite image intensity having improved resolution. The method of the invention can provide a lenseless electron microscope having a resolution better than one angstrom and which overcomes distortions caused by multiple scattering.
Abstract:
A multi-biprism electron interferometer is configured so as to arrange a plurality of biprisms in an imaging optical system of a specimen. An upper electron biprism is arranged upstream of the specimen in the traveling direction of the electron beam, and an image of the electron biprism is formed on the specimen (object plane) using an imaging action of a pre-field of the objective lens. A double-biprism interference optical system is constructed of a lower electron biprism disposed downstream of the objective lens up to the first image plane of the specimen.
Abstract:
A double-biprism electron interferometer is an optical system which dramatically increases the degree of freedom of a conventional one-stage electron interferometer. The double biprism interferometer, however, is the same as the optical system of the single electron biprism in terms of the one-dimensional shape of an electron hologram formed by filament electrodes, the direction of an interference area, and the azimuth of the interference fringes. In other words, the longitudinal direction of the interference area is determined corresponding to the direction of the filament electrodes, and the azimuth of the interference fringes only coincides with and is in parallel with the longitudinal direction of the interference area. An interferometer according to the present invention has upper-stage and lower-stage electron biprisms, and operates with an azimuth angle Φ between filament electrodes of the upper-stage and lower-stage electron biprisms to arbitrarily control an interference area and an azimuth θ of the interference fringes formed therein.
Abstract:
An interferometer is disclosed which has upper-stage, intermediate-stage, and lower-stage electron biprisms. The disclosed interferometer operates with an azimuth angle Φ among filament electrodes of the three electron biprisms to arbitrarily control an interference area and an azimuth θ of the interference fringes formed therein, eliminates Fresnel fringes generation, and allows independent control of an interference fringe spacing s and the azimuth θ of the interference fringes.
Abstract:
The conventional detection technique has the following problems in detecting interference fringes: (1) Setting and adjustment are complex and difficult to conduct; (2) A phase image and an amplitude image cannot be displayed simultaneously; and (3) Detection efficiency of electron beams is low. The invention provides a scanning interference electron microscope which is improved in detection efficiency of electron beam interference fringes, and enables the user to observe electric and magnetic information easily in a micro domain of a specimen as a scan image of a high S/N ratio under optimum conditions.
Abstract:
An analysis method using an electron microscope, detects by a first electronography detector an electron beam transmitted through or scattered by a sample to detect an ADF image of the sample, detects by a second electronography detector the electron beam passing through the first electronography detector to detect an MABF image, adjusts a focal point of the electron beam to be located on the film of the sample to obtain first and second electronographies by the second and first electronography detectors, respectively, adjusts the focal point of the electron beam to be located on the substrate of the sample to obtain third and fourth electronographies by the second and first electronography detectors, respectively, aligns positions of the second and fourth electronographies based on the first and third electronographies, and after the aligning, subtracts the fourth electronography from the second electronography to obtain an image of the film.
Abstract:
A double-biprism electron interferometer is an optical system which dramatically increases the degree of freedom of a conventional one-stage electron interferometer. The double biprism interferometer, however, is the same as the optical system of the single electron biprism in terms of the one-dimensional shape of an electron hologram formed by filament electrodes, the direction of an interference area, and the azimuth of the interference fringes. In other words, the longitudinal direction of the interference area is determined corresponding to the direction of the filament electrodes, and the azimuth of the interference fringes only coincides with and is in parallel with the longitudinal direction of the interference area. An interferometer according to the present invention has upper-stage and lower-stage electron biprisms, and operates with an azimuth angle Φ between filament electrodes of the upper-stage and lower-stage electron biprisms to arbitrarily control an interference area and an azimuth θ of the interference fringes formed therein.
Abstract:
A method for image reconstruction in a high-resolution electron microscope. The Fourier transform (29) of an electron hologram (28) is obtained which is composed of a central frequency domain CB=I.sub.hol,0 (G) and two sidebands SB+=I.sub.hol,+ (G) and SB-=I.sub.hol,- (G). The two sidebands represent the linear image information. By making use of the frequencies in the central frequency domain in the image reconstruction, a non-linear image reconstruction is performed having a resolution which is considerably higher than the achievable information limit in linear image reconstruction using only the sidebands.
Abstract:
In an electron holography apparatus having an electron source, a specimen holder, an electron lens system, and an electron biprism, the electron biprism is so constructed as to be rotatable about the electron optics axis. The rotation angle about the electron optics axis is commanded by the operator of the electron holography apparatus. A central wire of the electron biprism is allowed to be translated in a direction orthogonal to the electron optics axis, thus permitting the application of the fringe scanning method. The center of an aperture is selectively allowed to be aligned with that of the electron biprism to ensure that the measurement apparatus can be used selectively as either the electron holography apparatus or an electron microscope.
Abstract:
An analysis method using an electron microscope, detects by a first electronography detector an electron beam transmitted through or scattered by a sample to detect an ADF image of the sample, detects by a second electronography detector the electron beam passing through the first electronography detector to detect an MABF image, adjusts a focal point of the electron beam to be located on the film of the sample to obtain first and second electronographies by the first and second electronography detectors, respectively, adjusts the focal point of the electron beam to be located on the substrate of the sample to obtain third and fourth electronographies by the first and second electronography detectors, respectively, aligns positions of the second and fourth electronographies based on the first and third electronographies, and after the aligning, subtracts the fourth electronography from the second electronography to obtain an image of the film.