Abstract:
Provided is a compact device which captures, over a large solid angle range, electrically charged particles emitted from a point source and parallelizes the trajectories of said charged particles. The present invention is configured from: an electrostatic lens comprising a plurality of axisymmetric electrodes (10-14) and an axisymmetric aspherical mesh (2) which has a surface that is concave away from the point source; and a flat collimator plate (3) positioned coaxially with the electrostatic lens. The acceptance angle for the electrically charged particles generated from a point source (7) is ±30° or greater. The shape of the aspherical mesh (2), and the potentials and the positions of a ground electrode (10) and application electrodes (11-15) are adjusted so that the trajectories of the electrically charged particles are substantially parallelized by the electrostatic lens. The electrostatic lens and the flat collimator plate are positioned on a common axis.
Abstract:
An electron energy analyzer including a curved electrostatic low-pass reflector and a high-pass electrostatic transmissive filter. The reflector comprises a curved grid, preferably ellipsoidal, and an absorber electrode placed in back of the curved grid with respect to the electron source and biased negatively to the curved grid to act as a reflective low-pass filter and a collimating optics for the reflected beam. The transmissive filter includes first and second flat grids extending across the collimated reflected beam. The second grid on the side of the first grid opposite the curved grid is biased negatively to the first grid and the absorber electrode. A field free region is created by applying the same bias to the curved grid, the first grid, and chamber sidewall sleeve. An electron detector detects all electrons passed by the second grid in an energy band in the overlap of the high-pass and low-pass bands.
Abstract:
A charged particle analyzer comprises a spherical grid, a spherical electrode, a screen plate, and a detector. The spherical electrode is outside of the spherical grid and is concentric with the spherical grid. The screen plate has an entry window and an exit opening, which are symmetrical with the center of the sphere of the spherical grid. A sample is disposed at the entry window of the screen plate. The detector is positioned behind the exit opening to detect charged particles emitted from the sample. The charged particles having the same energy can travel through the exit opening of the screen plate, and their amount or their angular distribution is measured.
Abstract:
A deflection element for an electrostatic opposing field spectrometer includes a grid electrode at a positive potential and a deflection electrode at a negative potential disposed symmetrically thereto, as well as housing portions disposed between the grid electrode and the deflection electrode, so that together they form a generated surface of a hollow cylinder disposed concentric to an optical axis of the spectrometer.
Abstract:
The spectrometer objective of the invention is composed of a short focal length objective lens (OL) and a spectrometer-detector arrangement which is completely integrated in the magnetic lens. The working distance (L) has a decisive influence on the chromatic and spherical image defect of the objective lens (OL) which can be reduced with the arrangement of the invention and, thus, the diameter of the electron probe on the specimen (PR) can be substantially demagnified. An angle-independent accumulation of the secondary electrons (SE) are triggered such that the measuring location occurs according to the invention by imaging of the virtual source point (QS) of the secondary electrons (SE) into the center of a spherical opposing field which occurs in the spatial region between two spherical-symmetrical grid electrodes (K1 and K2).
Abstract:
Method and apparatus for energy analysis of a stream of moving electrons by effecting electrostatic segregation and counting of an electron portion having a preselected kinetic energy.
Abstract:
A retarding potential type energy analyzer including a front grid electrode, reference grid electrode and rear grid electrode sequentially arranged, with a predetermined amount of potential difference given between the reference grid electrode and the front grid electrode to form an upward potential gradient as well as a potential difference given between the reference grid electrode and the rear grid electrode to form a downward potential gradient, the grid electrodes are arranged so that the distance between the reference grid electrode and the rear grid electrode is shorter than the distance between the reference grid electrode and the front grid electrode, or the potential difference between the reference grid electrode and the rear grid electrode is made to be greater than the potential difference between the reference grid electrode and the front grid electrode.
Abstract:
An ion energy analyzer for determining an ion energy distribution of a plasma and comprising an entrance grid, a selection grid, and an ion collector. The entrance grid includes a first plurality of openings dimensioned to be less than a Debye length for the plasma. The ion collector is coupled to the entrance grid via a first voltage source. The selection grid is positioned between the entrance grid and the ion collector and is coupled to the entrance grid via a second voltage source. An ion current meter is coupled to the ion collector to measure an ion flux onto the ion collector and transmit a signal related thereto.
Abstract:
A process by which an ion energy analyzer is manufactured includes processing a first substrate to form an entrance grid having a first channel and a first plurality of openings extending therethrough. A second substrate is processed to form a selection grid having a second channel therein and a second plurality of openings extending therethrough. A third substrate is processed to form an ion collector having a third channel therein. The entrance grid is operably coupled to, and electrically isolated from, the selection grid, which is, in turn, operably coupled to, and electrically isolated from, the ion collector.
Abstract:
A device and method are presented for use in measuring photon energy. The device comprises at least one pixel unit (10) including a Photocathode (12) that emits electrons in response to absorbed photons; an Anode (14); and a control unit (19) operable for controlling an electric current from the Photocathode (12) to the Anode (14) so as to selectively prevent electrons' arrival to the Anode (14) to thereby scan a spectrum of photon energies incident on the Photocathode (12).