Abstract:
Disclosed is a metrology sensor apparatus and associated method. The metrology sensor apparatus comprises an illumination system operable to illuminate a metrology mark on a substrate with illumination radiation having a first polarization state and an optical collection system configured to collect scattered radiation, following scattering of the illumination radiation by the metrology mark. The metrology mark comprises a main structure and changes, relative to the first polarization state, at least one of a polarization state of a first portion of the scattered radiation predominately resultant from scattering by the main structure and a polarization state of a second portion of radiation predominately resultant from scattering by one or more features other than the main structure, such that the polarization state of the first portion of the scattered radiation is different to the polarization state of the second portion of the scattered radiation. The metrology sensor apparatus further comprises an optical filtering system which filters out the second portion of the scattered radiation based on its polarization state.
Abstract:
An inspection tool for inspecting a semiconductor substrate is described, the inspection tool comprising: - a substrate table configured to hold the substrate; - an electron beam source configured to project an electron beam onto an area of interest of the substrate; - a cathode-luminesce detector configured to detect cathodoluminescent light emitted from the area of interest; - a control unit configured to: - receive a signal representative of the detected cathodoluminescent light; - determine, based on the signal, a stress distribution of the area of interest.
Abstract:
An optical system delivers illuminating radiation and collects radiation after interaction with a target structure on a substrate. A measurement intensity profile is used to calculate a measurement of the property of the structure. The optical system may include a solid immersion lens. In a calibration method, the optical system is controlled to obtain a first intensity profile using a first illumination profile and a second intensity profile using a second illumination profile. The profiles are used to derive a correction for mitigating the effect of ghost reflections. Using, e.g., half-moon illumination profiles in different orientations, the method can measure ghost reflections even where a SIL would cause total internal reflection. The optical system may include a contaminant detection system to control a movement based on received scattered detection radiation. The optical system may include an optical component having a dielectric coating to enhance evanescent wave interaction.
Abstract:
The invention provides a position sensor (300) which comprises an optical system (305,306) configured to provide measurement radiation (304) to a substrate (307). The optical system is arranged to receive at least a portion of radiation (309) diffracted by a mark (308) provided on the substrate. A processor (313) is applied to derive at least one position-sensitive signal (312) from the received radiation. The measurement radiation comprises at least a first and a second selected radiation wavelength. The selection of the at least first and second radiation wavelengths is based on a position error swing-curve model.
Abstract:
Disclosed is a metrology sensor system, such as a position sensor. The system comprises an optical collection system configured to collect diffracted or scattered radiation from a metrology mark on a substrate, said collected radiation comprising at least one parameter-sensitive signal and noise signal which is not parameter-sensitive, a processing system operable to process the collected radiation; and a module housing. An optical guide is provided for guiding the at least one parameter-sensitive signal, separated from the noise signal, from the processing system to a detection system outside of the housing. A detector detects the separated at least one parameter-sensitive signal. An obscuration for blocking zeroth order radiation and/or a demagnifying optical system may be provided between the optical guide and the detector.
Abstract:
A method including obtaining a plurality of radiation distributions of measurement radiation redirected by the target, each of the plurality of radiation distributions obtained at a different gap distance between the target and an optical element of a measurement apparatus, the optical element being the nearest optical element to the target used to provide the measurement radiation to the target, and determining a parameter related to the target using data of the plurality of radiation distributions in conjunction with a mathematical model describing the measurement target.
Abstract:
A micromirror array comprising: a substrate; a plurality of mirrors for reflecting incident light; for each mirror of the plurality of mirrors, at least one actuator for displacing the mirror and connected to the substrate; one or more pillars connecting the mirror to the at least one actuator; and for each mirror of the plurality of mirrors, a heat diffuser for diffusing heat from the mirror, the heat diffuser comprising a heat sink and a thermally conductive post connecting the heat sink to the mirror, wherein the heat sink comprises a flexible membrane, which allows the thermally conductive post to pivot when the mirror is displaced, and wherein the flexible membrane comprises a center portion and a peripheral portion, the center portion having a thickness greater than a thickness of the peripheral portion.
Abstract:
A metrology tool for determining a parameter of interest of a structure fabricated on a substrate, the metrology tool comprising: an illumination optical system for illuminating the structure with illumination radiation under a non-zero angle of incidence; a detection optical system comprising a detection optical sensor and at least one lens for capturing a portion of illumination radiation scattered by the structure and transmitting the captured radiation towards the detection optical sensor, wherein the illumination optical system and the detection optical system do not share an optical element.
Abstract:
An inspection tool for inspecting a semiconductor substrate is described, the inspection tool comprising: - an substrate table configured to hold the substrate; - an electron beam source configured to project an electron beam onto an area of interest of the substrate, the area of interest comprising a buried structure; - a cathodoluminescent detector configured to detect cathodoluminescent light emitted from the buried structure; - a control unit configured to: - control the electron beam source to project to electron beam onto the area of interest; - receive a signal representative of the detected cathodoluminescent light; - determine, based on the signal, a characteristic of the buried structure.
Abstract:
Devices and methods for processing a radiation beam with coherence are disclosed. In one arrangement, an optical system receives a radiation beam with coherence. The radiation beam comprises components distributed over one or more radiation beam spatial modes. A waveguide supports a plurality of waveguide spatial modes. The optical system directs a plurality of the components of the radiation beam belonging to a common radiation beam spatial mode and having different frequencies onto the waveguide in such a way that each of the plurality of components couples to a different set of the waveguide spatial modes, each set comprising one or more of the waveguide spatial modes.