Abstract:
A semiconductor light-emitting device comprises a substrate; a first adhesive layer on the substrate; multiple epitaxial units on the first adhesive layer; a second adhesive layer on the multiple epitaxial units; multiple first electrodes between the first adhesive layer and the multiple epitaxial units, and contacting the first adhesive layer and the multiple epitaxial units; and multiple second electrodes between the second adhesive layer and the multiple epitaxial units, and contacting the second adhesive layer and the multiple epitaxial units; wherein the multiple epitaxial units are totally separated.
Abstract:
The present disclosure provides a semiconductor device. The semiconductor device includes a semiconductor stack, a trench formed in the semiconductor stack, a current confinement layer, a first electrode and a second electrode. The semiconductor stack includes a first reflective structure, a second reflective structure, and a cavity region. The cavity is between the first reflective structure and the second reflective structure and has a first surface and a second surface opposite to the first surface. The current confinement layer is in the second reflective structure. The first electrode and the second electrode are on the first surface.
Abstract:
This disclosure discloses a light-emitting device. The light-emitting device includes a light-emitting stack having a first-type semiconductor layer, a second-type semiconductor layer, and an active layer formed between the first-type semiconductor layer and the second-type semiconductor layer; and a reflective structure formed on the first-type semiconductor layer and having a first interface and a second interface. A critical angle at the first interface for a light emitted from the light-emitting stack is larger than that at the second interface. The reflective structure electrically connects to the first-type semiconductor layer at the first interface, and an area of the first interface is more than an area of the second interface in a top view.
Abstract:
A semiconductor light-emitting device comprises a substrate; a first adhesive layer on the substrate; multiple epitaxial units on the first adhesive layer; a second adhesive layer on the multiple epitaxial units; multiple first electrodes between the first adhesive layer and the multiple epitaxial units, and contacting the first adhesive layer and the multiple epitaxial units; and multiple second electrodes between the second adhesive layer and the multiple epitaxial units, and contacting the second adhesive layer and the multiple epitaxial units; wherein the multiple epitaxial units are totally separated.
Abstract:
A semiconductor light-emitting device comprises a substrate; a first adhesive layer on the substrate; multiple epitaxial units on the first adhesive layer; a second adhesive layer on the multiple epitaxial units; multiple first electrodes between the first adhesive layer and the multiple epitaxial units, and contacting the first adhesive layer and the multiple epitaxial units; and multiple second electrodes between the second adhesive layer and the multiple epitaxial units, and contacting the second adhesive layer and the multiple epitaxial units; wherein the multiple epitaxial units are totally separated.
Abstract:
An optoelectronic device is provided. The optoelectronic device comprises: an optoelectronic system for emitting light; multiple contact regions on the optoelectronic system and separated from one another; and multiple fingers on the optoelectronic system and opposite to the multiple contact regions; wherein a first contact region in the multiple contact regions is between two adjacent fingers, and a first distance between the first contact region and one of the adjacent fingers is between 5% and 50% of a second distance between the two adjacent fingers.
Abstract:
A method of manufacturing a semiconductor light-emitting device, comprises the steps of providing a first substrate; providing multiple epitaxial units on the first substrate, wherein the plurality of epitaxial units comprises: multiple first epitaxial units, wherein each of the first epitaxial units has a first geometric shape and a first area; and multiple second epitaxial units, wherein each of the second epitaxial units has a second geometric shape and a second area; providing a second substrate with a surface; transferring the multiple second epitaxial units to the surface of the second substrate; and dividing the first substrate to form multiple first semiconductor light-emitting devices, wherein each of the first semiconductor light-emitting devices has the first epitaxial unit; wherein the first geometric shape is different from the second geometric shape, or the first area is different from the second area.
Abstract:
A semiconductor light-emitting device includes a semiconductor stack comprising a first semiconductor layer, a second semiconductor layer, and an active layer between the first semiconductor layer and the second semiconductor layer, wherein the first semiconductor layer includes a periphery surface surrounding the active layer; a plurality of vias penetrating the semiconductor stack to expose the first semiconductor layer; and a patterned metal layer formed on the plurality of vias and covered the periphery surface of the first semiconductor layer.
Abstract:
This disclosure discloses a light-emitting device. The light-emitting device comprises: a substrate; and a first light-emitting unit comprising a plurality of light-emitting diodes electrically connected to each other on the substrate. A first light-emitting diode in the first light-emitting unit comprises a first semiconductor layer with a first conductivity-type, a second semiconductor layer with a second conductivity-type, and a light-emitting stack formed between the first and second semiconductor layers. The first light-emitting diode in the first light-emitting unit further comprises a first connecting layer on the first semiconductor layer for electrically connecting to a second light-emitting diode in the first light-emitting unit; a second connecting layer, separated from the first connecting layer, formed on the first semiconductor layer; and a third connecting layer on the second semiconductor layer for electrically connecting to a third light-emitting diode in the first light-emitting unit.
Abstract:
A method for manufacturing semiconductor light-emitting devices comprising the steps of: providing a multi-layer semiconductor film comprising a surface; roughening the surface of the multi-layer semiconductor film to form a scattering surface; re-growing a semiconductor layer on the scattering surface; and roughening the semiconductor layer to form a sub-scattering portion on the scattering surface; wherein the sub-scattering portion is structurally smaller than the scattering surface.