Abstract:
A thermal bend actuator ( 6 ) is provided with a group of upper arms ( 23, 25, 26 ) and a group of lower arms ( 27, 28 ) which are non planar, so increasing the stiffness of the arms. The arms ( 23, 25, 26,27,28 ) may be spaced transversely of each other and do not overly each other in plan view, so enabling all arms to be formed by depositing a single layer of arm forming material
Abstract:
PURPOSE: An electro-osmosis pump using a reversible electrode reaction and a fluid pumping system using the same are provided to transfer a large amount of fluid for a long time while the size and a configuration of the electro-osmosis pump are intactly maintained. CONSTITUTION: An electro-osmosis pump (10) using a reversible electrode reaction includes a transfer line, a first check valve, a second check valve, a pumping line, and a separator. The transfer line provides a passage for transferring a target fluid (16) from a container to the outside. The first and second check valves are installed to be spaced from the transfer line respectively and prevent the target fluid flowing to a reverse direction of a transferring direction. The pumping line is connected to a part of the transferring line between the first and second check valves. The electro-osmosis pump provides a pumping force to the pumping line. The separator separates the electro-osmosis pump from the target fluid and transmits the pumping force to the target fluid. [Reference numerals] (14) Power providing unit
Abstract:
서멀 밴드 엑츄에이터(6)는 평면구조가 아닌 상부암(23,25,26)과 하부암(27,28)으로 구성되어 있어서 암의 강도가 증가하게 된다. 이 암(23,25,27,28)들은 횡방향으로 서로 간격을 두고 있으며, 평면도상 서로 겹치지 않게 되어 있어서, 모든 암을 하나의 암형성물질층을 적층하여 형성할 수 있게 된다.
Abstract:
PURPOSE: A micro pump using a magnetic fluid and a method for receiving the magnetic fluid in the micro pump are provided to reduce the cost for manufacturing a micro pump and to overcome the limitation in the user of a material by applying a magnetic fluid as a pumping source. CONSTITUTION: A micro pump using a magnetic fluid comprises a first substrate(10) having a plurality of magnetic field generating units(12a,12b), a second substrate(20) having a plurality of receiving spaces for receiving a magnetic fluid(1) reacting to the magnetic fields generated by the magnetic field generating units, a third substrate(30) having a plurality of injecting holes(32) for injecting the magnetic fluid to the receiving spaces and a plurality of magnetic field flow spaces(33) communicated with the receiving spaces, a plurality of thin films(40) covering the magnetic fluid flow spaces, deforming when the magnetic fluid reacts and returning to the original position, and a passage forming panel(50) for forming a passage(60) through which a driven fluid(2) is transferred. The magnetic fluid is thinly coated on the first substrate. Thereafter, the coated magnetic fluid is frozen. The frozen magnetic fluid is smoothened and cut by a desired thickness. The second substrate is attached onto the first substrate. After that, the magnetic fluid is unfrozen.
Abstract:
The invention relates to a method for producing at least one deformable membrane micropump comprising a first substrate (10) and a second substrate (20) assembled together, the first substrate (10) comprising at least one cavity (12-2) and the second substrate (20) comprising at least one deformable membrane (22-2) arranged facing said cavity (12-2). Said method comprises the following steps: said cavity (12-2) is produced in the first substrate (10), then - the first (10) and second (20) substrates are assembled together, then - said deformable membrane (22-2) is produced in the second substrate (10).
Abstract:
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung wenigstens einer Kavität in einer mikroelektronischen und/oder mikromechanischen Struktur unter Verwendung wenigstens einer Opferschicht sowie einen hiermit hergestellten Sensor oder Aktor. Es ist die Aufgabe der vorliegenden Erfindung, ein solches Verfahren beziehungsweise einen solchen Sensor oder Aktor zur Verfügung zu stellen, wobei die Opferschicht einen ausreichenden Abstand zwischen den Strukturelementen während der Präparation der mikroelektronischen und/oder mikromechanischen Struktur zur Verfügung stellt, die Opferschicht leicht zu entfernen ist und darüber hinaus auf möglichst einfache Weise ein Anhaften der Strukturelemente nach Entfernen der Opferschicht vermieden werden kann, wobei die Verfahrensschritte bei möglichst niedrigen Temperaturen ausführbar sein sollen, um beispielsweise polymere Funktionsschichten zur Ausbildung eines Sensors oder Aktors einsetzen zu können. Die Aufgabe wird einerseits durch ein gattungsgemäßes Verfahren und andererseits durch einen Sensor oder Aktor der oben genannten Gattung gelöst, wobei die Opferschicht aus wenigstens einem unterhalb seiner Schmelztemperatur mit einer Sublimationsrate von wenigstens 1nm/h sublimierenden Feststoff ausgebildet wird, und wobei der sublimierende Feststoff eine Schmelztemperatur in einem Bereich von 18°C bis 200°C aufweist.