Abstract:
Procédé d'encapsulation d'un dispositif microélectronique (100), comportant les étapes suivantes : - réalisation d'une portion sacrificielle recouvrant le dispositif ; - réalisation d'un capot (106) recouvrant la portion sacrificielle, comportant deux couches (108, 110) superposées de matériaux distincts et ayant des contraintes résiduelles et/ou des coefficients de dilatation thermique différents ; - gravure, à travers le capot, d'une tranchée (112) dont le motif comporte une courbe et/ou deux segments droits non parallèles ; - gravure de la portion sacrificielle à travers la tranchée ; - dépôt d'un matériau de bouchage sur la tranchée ; dans lequel, lors de la gravure de la portion sacrificielle, une portion (116) du capot définie par la tranchée se déforme sous l'effet d'une contrainte mécanique engendrée par les contraintes résiduelles et/ou une dilatation thermique des couches du capot et augmente les dimensions de la tranchée, cette contrainte étant supprimée avant le bouchage de la tranchée.
Abstract:
A technique (400) for manufacturing a micro-electro mechanical structure includes a number of steps. Initially, a cavity is formed into a first side of a handling wafer (404), with a sidewall of the cavity forming a first angle greater than about 54.7 degrees with respect to a first side of the handling wafer at an opening of the cavity. Then, a bulk etch is performed on the first side of the handling wafer to modify the sidewall of the cavity to a second angle greater than about 90 degrees (406), with respect to the first side of the handling wafer at the opening of the cavity. Next, a second side of a second wafer is bonded to the first side of the handling wafer (408).
Abstract:
A structural film, typically of silicon, in MEMS or NEMS devices is fabricated by depositing the film in the presence of a gas other than nitrogen, and preferably argon as the carrier gas.
Abstract:
A crystalline thin film structure formed by the deposition of a predominant first crystalline material in two or more layers interleaved by layers of a second crystalline material having a lattice constant that differs from the lattice constant of the predominant first crystalline material in order to disrupt the growth of columnar crystals in the predominant first crystalline material in order to reduce the differential stress profile through the thickness of the film structure relative to the differential stress profile of a crystalline thin film structure formed solely from the predominant first crystalline material.
Abstract:
A crystalline thin film structure formed by the deposition of a predominant first crystalline material in two or more layers interleaved by layers of a second crystalline material having a lattice constant that differs from the lattice constant of the predominant first crystalline material in order to disrupt the growth of columnar crystals in the predominant first crystalline material in order to reduce the differential stress profile through the thickness of the film structure relative to the differential stress profile of a crystalline thin film structure formed solely from the predominant first crystalline material.
Abstract:
On a substrate (20) of semiconductor material, a sacrificial region (21) is formed and an epitaxial layer (25) is grown; then a stress release trench (31) is formed, surrounding an area (33) of the epitaxial layer (25), where an integrated electromechanical microstructure is to be formed; the wafer (28) is then heat treated, to release residual stress. Subsequently, the stress release trench (31) is filled with a sealing region (34) of dielectric material, and integrated components are formed. Finally, inside the area surrounded by the sealing region (34), a microstructure definition trench is formed, and the sacrificial region is removed, thus obtaining an integrated microstructure with zero residual stress.
Abstract:
A method of fabricating an infrared sensitive bolometer, comprising the steps of:
forming a sacrificial layer (11, 12 or 43) on a substrate (10 or 41); patterning said sacrificial layer (11, 12 or 43) ; depositing or growing a layer (13 or 42) consisting essentially of polycrystalline SiGe on said sacrificial layer; depositing an infrared absorber (49) on said polycrystalline SiGe layer; removing the sacrificial layer (11, 12 or 43).