Abstract:
Die Erfindung betrifft eine Vorrichtung (10) zum Führen und Halten eines in Transportrichtung T kontinuierlich geförderten Strangs (11) der Tabak verarbeitenden Industrie während eines Schneidvorgangs strangförmiger Artikel (12) von dem Strang (11), umfassend ein mittels eines Antriebs (13) antreibbares Tubenrad (14), das aus einem Antriebskörper (15) und einem Führungskörper (16) gebildet ist, die über mindestens ein Koppelelement (17), dem mindestens eine Tube (22) als Halte- und Führungselement zugeordnet ist, miteinander in Wirkverbindung stehen, wobei der Antriebskörper (15) mit einer Antriebswelle (18) des Antriebs (13) verbunden ist, derart, dass der Antriebskörper (15) um die Rotationsachse A als ortsfeste und verstellfreie Antriebsachse rotierend angetrieben ist, und der Führungskörper (16) an einem Tragarm (20) auf einem Achselement (21) gelagert ist, derart, dass der Führungskörper (16) um eine Rotationsachse B, die versetzt zur Rotationsachse A angeordnet ist, rotierend ausgebildet ist, wobei ein Tubenrad (14) zur Anpassung der Vorrichtung (10) an veränderte, das Format bestimmende Artikellängen gegen ein anderes Tubenrad (14) austauschbar ist, die sich dadurch auszeichnet, dass das oder jedes Koppelelement (17) als Formatteil ausgebildet ist, derart, dass die Länge des oder jedes Koppelelementes (17) an das jeweils zu schneidende Format angepasst ist, so dass die austauschbaren Tubenräder (14) unterschiedlicher Geometrien bei identischer Länge der Tuben (22) einen konstanten Abstand H zwischen der Rotationsachse A und dem zu schneidenden Strang (11) aufweisen. Des Weiteren betrifft die Erfindung einen Tubenradsatz mit mindestens zwei solcher Tubenräder.
Abstract:
A light emitting device package, comprising: a base layer (350) having an flat top surface; a light emitting device (360) located directly on the flat top surface of the base layer; an electrical circuit layer (330) located above the flat top surface of the base layer and including at least one end portion placed adjacent to the light emitting device; an electrode layer (322) disposed above a tip portion of each of said end portion of the electrical circuit layer; and a lens (380) extending at least over the light emitting device and the end portion of the electrical circuit layer and covering the electrode layer.
Abstract:
A resin composition comprising: an inorganic filler (B) comprising an aluminosilicate (A) having a silicon atom content of from 9 to 23% by mass, an aluminum atom content of from 21 to 43% by mass, and an average particle diameter (D50) of from 0.5 to 10 µm; and any one or more thermosetting compounds selected from the group consisting of an epoxy resin (C), a cyanate compound (D), a maleimide compound (E), a phenolic resin (F), an acrylic resin (G), a polyamide resin (H), a polyamideimide resin (I), and a thermosetting polyimide resin (J), wherein a content of the inorganic filler (B) is from 250 to 800 parts by mass based on 100 parts by mass of resin solid content.
Abstract:
An electronic power module (20) comprising a case (22) that houses a stack (88), which includes: a first substrate (26) of a DBC type or the like; a die (27), integrating an electronic component having one or more electrical-conduction terminals, mechanically and thermally coupled to the first substrate; and a second substrate (29), of a DBC type or the like, which extends over the first substrate and over the die and presents a conductive path (32) facing the die. The die is mechanically and thermally coupled to the first substrate by a first coupling region (30) of a sintered thermoconductive paste, and the one or more conduction terminals of the electronic component are mechanically, electrically, and thermally coupled to the conductive path (32) of the second substrate (29) by a second coupling region (34) of sintered thermoconductive paste.
Abstract:
A copper foil composite comprising a copper foil and a resin layer laminated thereon, satisfying an equation 1: (f 3 x t 3 )/(f 2 x t 2 ) => 1 wherein t 2 (mm) is a thickness of the copper foil, f 2 (MPa) is a stress of the copper foil under tensile strain of 4%, t 3 (mm) is a thickness of the resin layer, f 3 (MPa) is a stress of the resin layer under tensile strain of 4%, and an equation 2:1
Abstract:
An apparatus and system for a heat sink assembly, and a procedure for forming a heat sink assembly. The heat sink assembly includes a heat sink having a base and fins extending from the base, and a spring clip disposed on the heat sink between the fins. The spring clip includes a first tab that forms a first angle with respect to the base of the heat sink and including a second tab that forms a second angle with respect to the base of the heat sink. The first and second tabs are attached to the circuit board. By virtue thereof, a heat sink attachment to cage is provided that is space-efficient and permits a higher density of cages on a circuit board than do conventional arrangements.
Abstract:
An electrical assembly comprises a dielectric substrate (14) and a metallic conductive trace (12) overlying the substrate. The metallic conductive trace has a hollow cross-section (18) that forms a duct (12). An annular member (20) protrudes from the metallic conductive trace. The annular member has an opening (24) in communication with the duct, the opening for receiving pressurized air or gas.
Abstract:
A radio frequency (RF) module having a plurality of channels includes a heat sink having at least one tapered edge; a substrate disposed over a surface of the heat sink such that the tapered edge of the heat sink extends past a boundary of the substrate. RF, logic and power circuitry is disposed on the substrate and one or more RF signal ports are formed on an edge of the substrate to allow the RF module to be used in an array antenna having a brick architecture. The tapered edge heat sink provides both a ground plane for RF signal components and a thermal path for heat generating circuits disposed in the substrate.
Abstract:
An apparatus and system for a heat sink assembly, and a procedure for forming a heat sink assembly. The heat sink assembly includes a heat sink having a base and fins extending from the base, and a spring clip disposed on the heat sink between the fins. The spring clip includes a first tab that forms a first angle with respect to the base of the heat sink and including a second tab that forms a second angle with respect to the base of the heat sink. The first and second tabs are attached to the circuit board. By virtue thereof, a heat sink attachment to cage is provided that is space-efficient and permits a higher density of cages on a circuit board than do conventional arrangements.
Abstract:
The invention relates to a flexible printed circuit with low emissivity which includes first and second ends (48a, 48b) and a flexible central portion (50) extending between the first and second ends and comprising electrically conductive tracks (52) embedded in a polymer material in order electrically to connect the first and second ends. The flexible central portion is at least partially covered with a heat shield (54) made of a material having lower emissivity than that of the polymer material and the electric conductors.