Abstract:
Provided is an observation method by an electron microscope, in which a biological sample can be observed as it is alive and a situation that the biological sample is moving can be observed using an electron microscope, and a composition for evaporation suppression under vacuum, a scanning electron microscope, and a transmission electron microscope used in the method. The sample observation method by an electron microscope according to the invention includes applying a composition for evaporation suppression containing at least one kind selected from an amphiphilic compound, oils and fats, and an ionic liquid to the surface of a sample to form a thin film, and covering the sample with the thin film, and displaying an electron microscopic image of the sample, which is covered with the thin film and accommodated in a sample chamber under vacuum, on a display device.
Abstract:
A method for attaching a frozen specimen to a manipulator probe tip typically inside a charged-particle beam microscope. The method comprises cooling the probe tip to a temperature at or below that of the frozen specimen, where the temperature of the frozen specimen is preferably at or below the vitrification temperature of water; bringing the probe tip into contact with the frozen specimen, and bonding the probe tip to the frozen specimen by flowing water vapor onto the region of contact between the probe tip and the frozen specimen. The bonded probe tip and specimen may be moved to a support structure such as a TEM grid and bonded to it by similar means. The probe tip can then be disconnected by heating the probe tip or applying a charged-particle beam.
Abstract:
An in situ optical specimen holder is disclosed which may be utilized for imaging and analysis during dynamic experimentation. This holder assembly includes a set of focusing and reflection optics along with an environmental cell. Electromagnetic radiation can be used to optically excite the specimen in the presence or absence of fluid. A highly reflective mirror may be used to focus the radiation on to the specimen without the presence of any heating components within the cell. The spot size of the irradiation at the specimen surface can be varied, thus exciting only a specific region on the specimen. The window type cell provides a variable fluid path length ranging from the specimen thickness to 500 μm. The holder has the provision to continuously circulate fluids over the specimen. The pressure within the cell can be regulated by controlling the flow rate of the fluids and the speed of the pumps.
Abstract:
A processing system for processing an object (3) is provided, wherein the processing system is adapted, to focus a first energy beam, in particular an electron beam (11), and a second energy beam, in particular an ion beam (21), on a focusing region (29) in which a object (3) to be processed is arrangeable. A processing chamber wall (35) having two openings (38, 39) for traversal of both energy beams and a connector (37) for supplying process gas delimits a processing chamber (45) from a vacuum chamber (2) of the processing system. Processing the object by activating the process gas through one of the energy beams and inspecting the object via one of the energy beams is enabled for different orientations of the object relative to a propagation direction of one of the energy beams.
Abstract:
A microreactor for use in a microscope, comprising a first and second cove layer (13) , which cover layers are both at least partly transparent to an electron beam (14) of an electron microscope, and extend next to each other at a mutual distance from each other and between which a chamber (15) is enclosed, wherein an inlet (4) and an outlet (5) are provided for feeding fluid through the chamber and wherein heating means (8) are provided for heating the chamber and/or elements present therein.
Abstract:
A method of operating liquid in a vacuum or low-pressure environment and observing the operation and a device for the operation and the observation respectively, including the steps of preparing a housing, putting the housing in the vacuum or low-pressure environment and control liquid, vapor, and buffer chambers under the same temperature, infusing vapor into the vapor chamber through a gas inlet and control the vapor pressure inside the vapor chamber to be equal to the saturated vapor pressure of a liquid specimen inside the liquid chamber under the same temperature to prevent the inside liquid from volatilization, and evacuating the buffer chamber through the pumping port to pump out the vapor and prevent the vapor from exhausting through outer apertures out of the housing. A probing source can pass through the outer, inner, and vapor apertures for observation and analysis of the liquid specimen inside the liquid chamber.
Abstract:
The invention provides for a scanning electron or ion beam instrument capable of transferring the beam from a high vacuum chamber (8) into a high pressure chamber (5) via aperture (1) and aperture (2). The beam is deflected and scanned by coils (3) generally positioned between apertures (1) and (2). The amplitude of deflection of the beam over a specimen placed inside chamber (5) is substantially larger than the diameter of aperture (1). Leaking gas through aperture (1) is removed via port (7) by appropriate pumping apparatus. The size of aperture (1) is such that the pressure in chamber (6) combined with the supersonic jet and shock waves naturally forming therein do not result in catastrophic electron beam loss in chamber (6). The addition of appropriate detection means result in an instrument characterised by superior performance over prior art by way of better field of view at low magnification, better vacuum system and improved detection and imaging capabilities.
Abstract:
La présente invention concerne un dispositif pour le transfert et des réactions in-situ sous atmosphère contrôlée d'échantillons destinés à l'examen en microscopie électronique en transmission, caractérisé en ce qu'il est pourvu, en outre, d'un moyen (7) de guidage et de blocage en positions de transport et d'analyse de la tige (1) munie des porte-grilles (2), ladite tige (1) étant avantageusement solidarisée par vissage avec l'extrémité correspondante de la barre de traction (5) qui est guidée dans le fourreau (3), dont l'ouverture (9) de la partie avant (3′) de plus faible diamètre est prolongée, sur une portion de la longueur de cette partie avant (3′), de part et d'autre, par des rainures longitudinales (10), ladite partie avant (3′) étant raccordée au reste du fourreau (3) par vissage d'une portion épaulée (11), un joint (13′) réalisant l'étanchéité au niveau de l'assemblage vissé.