Abstract:
An exposure pattern is computed for exposing a desired pattern on a target in a charged-particle multi-beam processing apparatus to match a reference writing tool, and/or for compensating a deviation of the imaging from a pattern definition device onto the target from a desired value of critical dimension along at least one direction in the image area on the target: The desired pattern is provided as a graphical representation suitable for the reference tool, on the image area on the target. A convolution kernel is used which describes a mapping from an element of the graphical representation to a group of pixels which is centered around a nominal position of said element. A nominal exposure pattern is calculated by convolution of the graphical representation with the convolution kernel, said nominal exposure pattern being suitable to create a nominal dose distribution on the target when exposed with the processing apparatus.
Abstract:
To use a charged particle beam to form a complex and fine pattern by decreasing movement error of a stage, provided is an exposure apparatus comprising a beam generating section that generates a charged particle beam; a stage section that has a sample mounted thereon and moves the sample relative to the beam generating section; a detecting section that detects a position of the stage section; a predicting section that generates a predicted drive amount obtained by predicting a drive amount of the stage section based on a detected position of the stage section; and an irradiation control section that performs irradiation control for irradiating the sample with the charged particle beam, based on the predicted drive amount. Also provided is an exposure method.
Abstract:
The invention relates to a method for performing charged particle beam proximity effect correction, comprising the steps of: receiving a digital layout pattern to be patterned onto a target using one or more charged particle beams; selecting a base proximity function comprising a sum of an alpha and a beta proximity function, wherein said alpha proximity function models a short range proximity effect and said beta proximity function models a long range proximity effect, wherein a constant η is defined as a ratio between the beta proximity function and the alpha proximity function in said sum, with 0
Abstract:
An electron beam writing apparatus includes an electron gun system to emit an electron beam, a height adjustment unit, arranged at the downstream side compared to the electron gun system with respect to the optical axis direction, to variably adjust a height position of the electron gun system, an electron lens, arranged at the downstream side compared to the height adjustment unit with respect to the optical axis direction, to converge the electron beam, a lens control unit to control, for each variably adjusted and changed height position of the electron gun system, the electron lens such that the electron beam forms a crossover at a predetermined position, and an objective lens, arranged at the downstream side compared to the electron lens with respect to the optical axis direction, to focus the electron beam having passed the electron lens.
Abstract:
A multi charged particle beam writing apparatus includes an aperture member to form multiple beams, a blanking plate in which there are arranged a plurality of blankers to respectively perform blanking deflection for a corresponding beam in the multiple beams having passed through a plurality of openings of the aperture member, a blanking aperture member to block each beam having been deflected to be in OFF state by at least one of the plurality of blankers, a first grating lens, using the aperture member as gratings, to correct spherical aberration of the charged particle beam, and a correction lens configured to correct high order spherical aberration produced by the first grating lens.
Abstract:
Various embodiments of the present invention relate to a plasma electron source apparatus. The apparatus comprises a cathode discharge chamber in which a plasma is generated, an exit hole provided in said cathode discharge chamber from which electrons from the plasma are extracted by an accelerating field provided between said cathode discharge chamber and an anode, at least one plasma confinement device, and a switching mechanism for switching the at least one plasma confinement device between a first value allowing for electron extraction from the plasma and a second value prohibiting electron extraction from the plasma. Associated methods are also provided.
Abstract:
A method of operating a particle beam system includes digitally controlling first and second digitally controlled modules of the particle beam system, and sending digital command data to the first and second digitally controlled modules. The digital command data include at least a first command for the first digitally controlled module and at least a second command for the second digitally controlled module. The digital command data is generated based on information representing: a) a time when the first command is to be executed by the first digitally controlled module; and b) a time when the second command is to be executed by the second digitally controlled module.
Abstract:
This invention relates an ion beam source (10) for use with a non-electrical conducting target (14) including a grid (13) for extracting ions and a power supply for supplying pass power to the grid (13) to extract the ions.
Abstract:
When a time-of-flight mass selector having a chopper using a deflector selects the masses of the ions, an ion beam is deflected. As a result, at least a part of the ion beams diagonally pass through an aperture electrode with respect to the axis. Accordingly, there has been a problem that a position on an object irradiated with a cluster ion beam, results in moving. This mass selector includes: a flight tube having an equipotential space that makes a charged substance fly therein; a deflector that is installed in a downstream side with respect to the flight tube in a direction in which the charged substance flies; a first aperture electrode that is installed in a downstream side with respect to the deflector in a direction in which the charged substance flies; and a second aperture electrode that is installed in between the deflector and the first aperture electrode.
Abstract:
A method of operating a particle beam system includes determining a deflection amount and a deflection time of a beam deflection module connected to a data network. The method also includes determining an un-blank time of a beam blanking module connected to the data network, and determining a blank time of the beam blanking module connected to the data network. The method further includes generating a data structure which includes plural data records, wherein each data record includes a command representing an instruction for at least one of the modules, and a command time representing a time at which the instruction is to be sent to the data network. In addition, the method includes sorting the records of the data structure by command time, and generating a set of digital commands based on the data structure. Moreover, the method includes sending the digital commands of the set to the network in an order corresponding to an order of the sorted records.