Abstract:
PURPOSE: A separating panel made of a conductive polymer or a carbon complex for a polymer electrolyte fuel cell is provided to achieve a light weight and a thin thickness, prevent corrosion, and reduce production cost owing to the simplified process, compared to the conventional separating panel. CONSTITUTION: The separating panel(1) for a polymer electrolyte fuel cell is mainly comprised of a conductive polymer or a carbon complex, wherein the conductive polymer is at least one selected from a group consisting of polyaniline, polyphenylene, polythienylene vinylene, polypyrrole, polyphenylene vinylene and polyacetylene, and the carbon complex is one added with at least one selected from a group consisting of phenol resin, vinyl ester resin, epoxy resin, reinforced polyester resin and polyimide resin. The separating panel is produced by (a) preparing a mesh type gas flow channel panel(10) and a collecting panel, wherein the separating panel is a serpentine-parallel type panel having a gas channel or a mesh type gas separating panel; (b) attaching a gasket to meshes except the meshes contacting with the electrode in the mesh type gas flow channel panel; and (c) attaching the collecting panel to the mesh type gas flow channel panel from the step (b).
Abstract:
PURPOSE: A separating panel having a gas flow channel with uneven structure for a fuel cell is provided to minimize the gradient in gas concentration in the gas flow channel, and remarkably reduce the pressure drop between the inlet and outlet of the gas flow channel, thereby helping to easily drain the water in the channel, to diffuse the gas into the electrode. The separating panel also has improved efficiency without requiring additional manifolds. CONSTITUTION: The separating panel(11) made of an electroconductive material comprises a plurality of gas flow channels as one group, which are symmetrically positioned having the center of the separating panel as the axis, wherein the gas flow channel is formed to have repetitively protruded-and-receded uneven patterns(13) to each horizontal and vertical axis(15) of the separating panel, and the plurality of gas flow channels are converged, at each end of the inlet and outlet, into one channel being connected to one manifold(14).
Abstract:
PURPOSE: Provided are a direct coating type automatic spray apparatus, which gives uniform distribution of a catalyst and controls particle size and porosity easily, and a process for producing a high efficient membrane-electrode assembly(MEA) by using the direct type automatic spray apparatus. CONSTITUTION: The direct type automatic spray apparatus comprises: an automatic gun sprayer(1) for spreading a dispersion solution, which can control particle size and the spray amount automatically; a container(2) for storing the dispersion solution; a circulation type pump(3); a device(4) for fixing a material to be coated with a catalyst layer; an automatic rack(5) of X-Y-Z axes, which controls the moving position and repeated coating frequency of the X-Y-Z axes automatically. And the MEA is produced by spraying the dispersion solution containing a catalyst directly on a polymer electrolyte, a composite polymer electrolyte, or an electrolyte for a solid type fuel cell by using the automatic spray apparatus.
Abstract:
본 발명은 전극의 제조방법 및 이 방법으로 제조된 전극에 관한 것으로서, 기체 확산층 상부에 탄소 분말층을 도포시키는 단계, 촉매 잉크를 상기 탄소층 상부에 도포시켜 촉매층을 형성시키는 단계 및 상기 촉매층 상부에 이오노머 용액을 도포시키는 단계를 포함하는 방법으로 소량의 촉매로 수소 이온 전달 및 활성이 우수한 전극을 제조할 수 있다.
Abstract:
PURPOSE: Hydrogen discharging structure of a fuel cell vehicle is provided to prevent explosion by discharging hydrogen produced from anode into the air together with exhausted air, and to position layout of a discharging system to the lower part of the vehicle. CONSTITUTION: Hydrogen discharging structure of a fuel cell vehicle comprises an air pipe and a discharge pipe(50). The air pipe produces hydrogen through chemical reaction while supplying external air to a tank(10) with a fuel cell, and then discharges surplus air into the air. The discharge pipe, connected to the air discharging part of the air pipe and the discharge pipe, discharges hydrogen produced from the tank. The air pipe is positioned to the lower part of the fuel cell tank and the discharge pipe is positioned at the lower part of the tank.
Abstract:
PURPOSE: Provided is a humidifier which can reduce energy and volume necessary for humidification in gas supply for operating a polymer electrolyte fuel cell, and maintain humidity and temperature of reacting gas supplied to the fuel cell at optimum level. CONSTITUTION: The gas supply for operating a polymer electrolyte fuel cell consists of a gas inlet pipe; a flow controller; a gas feed pipe; a back pressure controller; a coolant controller; and a temperature controller of fuel cell. The humidifier comprises a humidifier container(20) connected to the gas feed pipe, water feed pipe(30), and fuel cell feed pipe(42); and an atomizer(26) for finely atomizing a gas(supplied by the gas feed pipe) and water(supplied by the water feed pipe(30)). The humidifier container(20) has double path(22), in which hot fuel cell coolant flows to heat water passing through the water feed pipe(30).
Abstract:
PURPOSE: Provided is a method for producing a polymer fuel cell containing an electrolyte membrane having superior properties and a large surface area by an ion aid reaction method. CONSTITUTION: The method includes (a) irradiating an ion beam having an energy of 0.1 to 2.0 keV at 1 x 10¬13 to 1 x 10¬19 ions/cm¬2 to a polymer electrolyte membrane(11) to form concavo-convex on the surface of the polymer electrolyte membrane; (b) preparing a catalytic slurry in the presence of a solvent and a thickener; (c) coating the catalyst on both sides of the polymer electrolyte membrane to an anode electrode(12) and a cathode electrode(13); and (d) disposing a diffusion layer(14) made of carbon fibers to the outside of the produced electrodes(12,13).
Abstract:
PURPOSE: A lithium polymer battery for an electric car or a hybrid electric car is provided to overcome deterioration of life cycle and performance of battery module and battery pack due to temperature deviation inside a unit cell by forming air flow for cooling the unit cell due to a plastic spacer inserted between the unit cells, thereby effectively controlling heat, and simplify overall structure of the battery, thereby increasing energy density by removing a structure which is added by internal pressure, etc. CONSTITUTION: The lithium polymer battery comprises a plastic case (50) having a structure through which external air can pass freely, spacers (70) which are inserted between a plurality of polymer unit cells having a few Ah and distanced each other, and an upper cover (80) on which negative and positive output terminals (81,82) are prominently formed, wherein the negative and positive output terminals (81,82) generate power by connecting the spacers (70) with the polymer unit cells (60) for producing high capacity and high voltage.