Abstract:
A method of fabricating micro-electromechanical switches (MEMS) integrated with conventional semiconductor interconnect levels, using compatible processes and materials is described. The method is based upon fabricating a capacitive switch that is easily modified to produce various configurations for contact switching and any number of metal-dielectric-metal switches. The process starts with a copper damascene interconnect layer, made of metal conductors inlaid in a dielectric. All or portions of the copper interconnects are recessed to a degree sufficient to provide a capacitive air gap when the switch is in the closed state, as well as provide space for a protective layer of, e.g., Ta/TaN. The metal structures defined within the area specified for the switch act as actuator electrodes to pull down the movable beam and provide one or more paths for the switched signal to traverse. The advantage of an air gap is that air is not subject to charge storage or trapping that can cause reliability and voltage drift problems. Instead of recessing the electrodes to provide a gap, one may just add dielectric on or around the electrode. The next layer is another dielectric layer which is deposited to the desired thickness of the gap formed between the lower electrodes and the moveable beam that forms the switching device. Vias are fabricated through this dielectric to provide connections between the metal interconnect layer and the next metal layer which will also contain the switchable beam. The via layer is then patterned and etched to provide a cavity area which contains the lower activation electrodes as well as the signal paths. The cavity is then back-filled with a sacrificial release material. This release material is then planarized with the top of the dielectric, thereby providing a planar surface upon which the beam layer is constructed.
Abstract:
A method of fabricating micro-electromechanical switches (MEMS) integrated with conventional semiconductor interconnect levels, using compatible processes and materials is described. The method is based upon fabricating a capacitive switch that is easily modified to produce various configurations for contact switching and any number of metal-dielectric-metal switches. The process starts with a copper damascene interconnect layer, made of metal conductors inlaid in a dielectric. All or portions of the copper interconnects are recessed to a degree sufficient to provide a capacitive air gap when the switch is in the closed state, as well as provide space for a protective layer of, e.g., Ta/TaN. The metal structures defined within the area specified for the switch act as actuator electrodes to pull down the movable beam and provide one or more paths for the switched signal to traverse. The advantage of an air gap is that air is not subject to charge storage or trapping that can cause reliability and voltage drift problems. Instead of recessing the electrodes to provide a gap, one may just add dielectric on or around the electrode. The next layer is another dielectric layer which is deposited to the desired thickness of the gap formed between the lower electrodes and the moveable beam that forms the switching device. Vias are fabricated through this dielectric to provide connections between the metal interconnect layer and the next metal layer which will also contain the switchable beam. The via layer is then patterned and etched to provide a cavity area which contains the lower activation electrodes as well as the signal paths. The cavity is then back-filled with a sacrificial release material. This release material is then planarized with the top of the dielectric, thereby providing a planar surface upon which the beam layer is constructed.
Abstract:
A method for fabricating a trilayered beam MEMS device includes depositing a sacrificial layer (310) on a substrate and depositing and removing a portion of a first conductive layer on the sacrificial layer (310) to form a first conductive microstructure (312); depositing a structural layer (322) on the first conductive microstructure (312); the sacrificial layer (310), and the substrate (300) and forming a via through the structural layer (322) to the first conductive microstructure (312); depositing a second conductive layer (336) on the structural layer (322) and in the via; forming a second conductive microstructure (324) by removing a portion of the second conductive layer (336), wherein the second conductive microstructure (324) electrically communicates with the first conductive microstructure (312) through the via; and removing a sufficient amount of the sacrificial layer (310) so as to separate the first conductive microstructure (312) from the substrate, wherein the structural layer (322) is supported by the substrate at a first end is freely suspended above the substrate at an opposing second end.
Abstract:
A movable, trilayered microcomponent (108) suspended over a substrate (102) is provided and includes a first electrically conductive layer (116) patterned to define a movable electrode (114). The first metal layer (116) is separated from the substrate (102) by a gap. The microcomponent (108) further includes a dielectric layer formed (112) on the first metal layer (116) and having an end fixed with respect to the substrate (102). Furthermore, the microcomponent (102) includes a second electrically conductive layer (120) formed on the dielectric layer (112) and patterned to define an electrode interconnect (124) for electrically communicating with the movable electrode (114).
Abstract:
According to one embodiment, a MEMS element includes a first member, and an element part. The element part includes a first fixed electrode fixed to the first member, and a first movable electrode facing the first fixed electrode, a first conductive member electrically connected with the first movable electrode, and a second conductive member electrically connected with the first movable electrode. The first movable electrode is supported by the first and second conductive members to be separated from the first fixed electrode in a first state before a first electrical signal is applied between the second conductive member and the first fixed electrode. The first conductive member is separated from the first movable electrode in a second state after the first electrical signal is applied. The first movable electrode is supported by the second conductive member to be separated from the first fixed electrode in the second state.
Abstract:
A button device includes a fixed support structure; a movable structure, laterally surrounded by the support structure and configured to deform at least in part under the action of an external force; and a fluid-tight protection cap. The movable structure includes a piston element, deformable elements having piezoelectric transducers arranged thereon, and anchor elements that couple the piston element to the deformable elements. When an external force acts on the piston element, the anchor elements transfer this force to the deformable elements and to the piezoelectric transducers, so as to sense the extent of this force.
Abstract:
According to one aspect of the invention, there is proposed a capacitive radiofrequency MicroElectroMechanical System or capacitive RF MEMS comprising a metallic membrane suspended above an RF transmission line and resting on ground planes, and exhibiting a lower face, an upper face opposite to the lower face and a first layer comprising a refractory metallic material at least partially covering the upper face of the membrane so as to prevent the heating of the membrane.
Abstract:
An actuator includes: an electrostatic actuation mechanism including a stationary electrode and a movable electrode; a first movable part driven by the electrostatic actuation mechanism; a first elastic support part that elastically supports the first movable part; an electret formed in at least one of the stationary electrode and the movable electrode; and a drive control unit that controls application of voltage to the electrostatic actuation mechanism. In the actuator a plurality of stable states are set in which the first movable part is positioned at a stable position at which an electrostatic force generated by the electret matches with an elastic force exerted by the first elastic support part or at a stable position near such stable position. By applying a voltage to the electrostatic actuation mechanism, the first movable part may be displaced from any stable position to another stable position.
Abstract:
A method for producing an integrated circuit pointed element is disclosed. An element has a projection with a concave part directing its concavity towards the element. The element includes a first etchable material. A zone is formed around the concave part of the element. The zone includes a second material that is less rapidly etchable than the first material for a particular etchant. The first material and the second material are etched with the particular etchant to form an open crater in the concave part and thus to form a pointed region of the element.