Abstract:
PRINTED CIRCUITS, INTEGRATED CIRCUITS, RESISTORS, THERMOCOUPLES, CONDENSERS, SUPERCONDUCTORS, ELECTROFORMED MATERIALS, AND THE LIKE ARE PRODUCED BY PROVIDING A PLASTIC OR SUBSTANTIALLY NON-METALLIC SUBSTRATE WITH A METAL PHOSPHORUS COMPOUND; APPLYING A RESIST; REMOVING THE UNPROTECTED METAL PHOSPHORUS COMPOUND; DISSOLVING THE RESIST; AND SUBJECTING THE SUBSTRATE TO ELECTROLESS OR ELECTROLYTIC TREATMENT.
Abstract:
A MICROWAVE CIRCUIT EMPLOYING MULTIPLATE TECHNIQUE IN WHICH TWO PLATES OF DIELECTRIC MATERIAL EACH CARRY ON ONE SIDE THEREOF A CONTINUOUS METAL LAYER AND ON THE OTHER SIDE CONDUCTOR TRACKS FORMING MICROWAVE CIRCUIT ELEMENTS, WITH SUCH PLATES BEING SUPERIMPOSED WITH THEIR SIDES CARRYING SUCH CONDUCTOR TRACKS IN OPPOSED RELATION, AND COMPRESSION FORCES APPLIED THERETO, CHARACTERIZED BY THE DIELECTRIC BEING IN THE FORM OF A RELATIVELY THINC COATING ON ONE SIDE OF RESPECTIVE RELATIVELY THICK METAL PLATES AND THE CONDUCTOR TRACKS BEING DISPOSED THE OUTER FACE OF THE RESPECTIVE DIELECTRIC COATINGS, THE RESPECTIVE PLATES AND ASSOCIATED DIELECTRIC COATINGS HAVING PERFORATIONS EXTENDING THERETHROUGH, THE WALLS OF THE APERTURES BEING COATED WITH A METALLIT LAYER EXTENDING FROM SELECTED CONDUCTOR TRACKS TO THE ASSOCIATED METAL PLATE TO CONDUCTIVELY CONNECT THE SAME.
Abstract:
A printed wiring board includes a resin insulating layer having recess portions formed on first surface, a first conductor layer formed in the recess portions and including pads positioned to mount an electronic component, conductive pillars formed on the pads, respectively, and formed to mount the electronic component onto the resin insulating layer, a second conductor layer formed on second surface of the resin insulating layer on the opposite side with respect to the first surface, and a via conductor formed in the resin insulating layer such that the via conductor is penetrating through the resin insulating layer and connecting the first and second conductor layers. The pillars is formed such that each of the pads has an exposed surface exposed from a respective one of the conductive pillars, and the pads are formed such that the exposed surface is recessed from the first surface of the resin insulating layer.
Abstract:
According to an embodiment of the present invention, a substrate for a printed circuit board, the substrate including a resin film and a metal layer deposited on at least one surface of the resin film, includes a modified layer on the surface of the resin film on which the metal layer is deposited, the modified layer having a composition different from another portion, in which the modified layer contains a metal, a metal ion, or a metal compound different from a main metal of the metal layer. The content of a metal element of the metal, the metal ion, or the metal compound on a surface of the modified layer is preferably 0.2 atomic % or more and 10 atomic % or less.
Abstract:
A circuit board includes a substrate, a patterned copper layer, a phosphorous-containing electroless plating palladium layer, an electroless plating palladium layer and an immersion plating gold layer. The patterned copper layer is disposed on the substrate. The phosphorous-containing electroless plating palladium layer is disposed on the patterned copper layer, wherein in the phosphorous-containing electroless plating palladium layer, a weight percentage of phosphorous is in a range from 4% to 6%, and a weight percentage of palladium is in a range from 94% to 96%. The electroless plating palladium layer is disposed on the phosphorous-containing electroless plating palladium layer, wherein in the electroless plating palladium layer, a weight percentage of palladium is 99% or more. The immersion plating gold layer is disposed on the electroless plating palladium layer.
Abstract:
A device housing package includes a substrate in a form of a rectangle, having a mounting region of a device at an upper surface thereof; a frame body disposed on the substrate so as to extend along an outer periphery of the mounting region, the frame body having a cutout formed at a part thereof; and an input-output terminal disposed in the cutout. The input-output terminal includes a first insulating layer, a second insulating layer overlaid on the first insulating layer, and a third insulating layer overlaid on the second insulating layer. First terminals set at a predetermined potential are disposed on an upper surface of the first insulating layer. Second terminals set at a predetermined potential are disposed on a lower surface of the first insulating layer. Third terminals through which AC signals flow are disposed on an upper surface of the second insulating layer.
Abstract:
The wiring board of the present invention includes an insulating layer, a strip-shaped wiring conductor for signals disposed on a main surface of the insulating layer, and a plain conductor for grounding or power disposed on the main surface of the insulating layer; and the thickness of the plane conductor is larger than the thickness of the strip-shaped wiring conductor. In the wiring board of the present invention, the thickness of the plane conductor is preferably 1 to 15 μm larger than the thickness of the strip-shaped wiring conductor. The strip-shaped wiring conductor has a thickness of preferably 3 to 10 μm, and the plane conductor has a thickness of preferably 5 to 15 μm.