Abstract:
A microelectromechanical system (MEMS) and integrated circuit based biosensor (210) capable of sensing or detecting various ionic molecules and macromolecules (DNA, RNA or protein). The MEMS based biosensor (210) may utilize a hybridization and enzyme amplification scheme and an electrochemical detection scheme for sensitivity improvement and system miniaturization. The biosensor or biosensors (210) are incorporated on a single substrate (200). Preferably, the biosensor system comprises at least two electrodes. The electrodes may comprise a working electrode (220), a reference electrode (240), and a counter (auxiliary) electrode (230). The biosensor or biosensors (210) also provide an apparatus and method for confinement of reagent and/or solution in the biosensor or biosensors (210) using surface tension at small scale. The confinement system provides controlled contacts between the reagent(s) and/or solution(s) with the components (i.e., electrodes) of the biosensor or biosensors (210) using controllable surface properties and surface tension forces. The confinement system allows for incorporation of the biosensor or biosensors (210) into a portable or handheld device and is immune to shaking and/or flipping. The invention also provides for a biosensor (210) and/or sensors that are integrated with integrated circuit (IC) technologies. Preferably, the entire sensor system or systems are fabricated on a single IC substrate (200) or chip and no external component and/or instrument is required for a complete detection system or systems. Preferably, the sensor system or systems are fabricated using the IC process on a silicon substrate (200).
Abstract:
The invention relates to a method for the production of a silicon torsion spring, whereby, for instance, the rotational speed in a microstructured torsion spring-mass system can be read. The invention aims at providing low torsional stiffness in comparison with a relatively high transversal stiffness in lateral and vertical direction. According to the invention, a wafer or wafer composite is used to produce a spring having a V-shaped cross section after masking by means of anisotropic wet-chemical etching, said spring extending preferably over the entire thickness of the wafer and being defined laterally by the [111] surfaces only. Two wafers or wafer composites thus prestructured are rotated by 180 DEG and bonded to one another by aligning them in a mirror-inverted manner in such a way that the desired X-shaped cross section is obtained. One advantage provided by the invention is that the technology used in the production of the laterally and vertically rigid rotational spring is comparatively simple.
Abstract:
The present invention provides merged-mask processes for fabricating micromachined devices in general and mirrored assemblies for use in optical scanning devices in particular. A method of fabricating a three dimensional structure, comprising, providing a substrate, applying a layer of a first masking material onto the substrate, applying a layer of a second masking material onto the layer of the first masking material, patterning the layer of the second masking material, applying a layer of a third masking material onto the portions not covered by the patterned layer of the second masking material, the layer of the third masking material is at least as thick as the combined thickness of the layers of the first and second masking materials, patterning the layers of the first and third masking materials, etching the exposed portions of the substrate, etching the exposed portions of the layers of the first and third masking materials and etching the exposed portions of the substrate.
Abstract:
The present invention provides merged-mask processes for fabricating micro-machined devices in general and mirrored assemblies for use in optical scanning devices in particular. The process includes (a) providing a substrate having a predetermined thickness; (b) applying a first masking layer on a first portion of the substrate and a second masking layer on a second portion of the substrate, said second masking layer being at least as thick as the first masking layer; (c) etching a portion of the second masking layer to provide a first exposed portion of the substrate; (d) etching the first exposed portion of the substrate to a first depth; (e) etching the second masking layer to provide a second exposed portion of the substrate; and (f) etching simultaneously the first exposed portion of the substrate to a second depth and the second exposed portion of the substrate to a first depth. The process further comprises patterning the first masking layer before applying the second masking layer to provide the second portion of the substrate for etching and etching the first masking layer to expose the second portion of the substrate. The first and second masking layers are applied prior to etching the substrate.
Abstract:
An apparatus and method for suspending a movable structure form a support structure wherein first and second flat and thin arcuately shaped flexures are formed having spaced apart substantially planar and parallel opposing surfaces, each of the first and second flexures being structured for connection between a support structure and a movable structure to be suspended from the support structure and being aligned along a common axis of rotation between the support structure and the movable structure. Two half-circular flexures may be arranged to form a circular shape or may be interconnected in their middle region to form a single x-shaped suspension member.
Abstract:
A microprotrusion array is formed from a silicon wafer by a plurality of sequential plasma and wet isotropic and anisotropic etching steps. The resulting microprotrusions (14) have sharpened tips (18) or cutting edges formed by wet isotropic etching, wherein each microprotrusion has a substantially pyramid shape with each side (16) having a concave surface. The tip of each microprotrusion has a substantially flat top surface (20) extending parallel to base (12).
Abstract:
A microelectromechanical system (MEMS) and integrated circuit based biosensor (210) capable of sensing or detecting various ionic molecules and macromolecules (DNA, RNA or protein). The MEMS based biosensor (210) may utilize a hybridization and enzyme amplification scheme and an electrochemical detection scheme for sensitivity improvement and system miniaturization. The biosensor or biosensors (210) are incorporated on a single substrate (200). Preferably, the biosensor system comprises at least two electrodes. The electrodes may comprise a working electrode (220), a reference electrode (240), and a counter (auxiliary) electrode (230). The biosensor or biosensors (210) also provide an apparatus and method for confinement of reagent and/or solution in the biosensor or biosensors (210) using surface tension at small scale. The confinement system provides controlled contacts between the reagent(s) and/or solution(s) with the components (i.e., electrodes) of the biosensor or biosensors (210) using controllable surface properties and surface tension forces. The confinement system allows for incorporation of the biosensor or biosensors (210) into a portable or handheld device and is immune to shaking and/or flipping. The invention also provides for a biosensor (210) and/or sensors that are integrated with integrated circuit (IC) technologies. Preferably, the entire sensor system or systems are fabricated on a single IC substrate (200) or chip and no external component and/or instrument is required for a complete detection system or systems. Preferably, the sensor system or systems are fabricated using the IC process on a silicon substrate (200).
Abstract:
Die Erfindung betrifft ein Verfahren zur Herstellung eines Drucksensorchips (11). Es erfolgt zuerst das Bereitstellen eines ersten Wafers als Sensorplatte(01), in welcher eine Druckkammer (15) des Drucksensorchips ausgebildet werden soll. Es wird eine gewünschte Dicke einer Membran (07) festgelegt, die auf einer Membranseite (02) der Sensorplatte (01) über der Druckkammer (15) erzeugt werden soll. Sodann werden mindestens die folgenden Strukturierungsschritte von einer der Membranseite gegenüberliegenden Öffnungsseite (03) aus ausgeführt, zur Ausbildung der Druckkammer (15): ein erster Strukturierungsschritt, durch welchen im ersten Wafer Strukturen mit Seitenwänden mit einem Flankenwinkel im Bereich 90° ±20° erzeugbar sind, anisotropes nasschemisches Ätzen, sowie nachfolgen isotropes Ätzen. Schließlich wird ein zweiter Wafer als Verstärkungsplatte (12) bereitgestellt und eine Durchgangsöffnung (14) in diese eingebracht. Abschließend wird die Sensorplatte (01) auf der Öffnungsseite (03) mit der Verstärkungsplatte (12) verbunden, wobei die Durchgangsöffnung (14) in die Druckkammer (15) mündet. Die Erfindung betrifft außerdem einen Drucksensorchip (11).
Abstract:
Die Erfindung betrifft ein Herstellungsverfahren für eine mikromechanische Fensterstruktur mit den Schritten: Bereitstellen eines Substrats (1), wobei das Substrat (1) eine Vorderseite (4) und eine Rückseite (5) aufweist; Bilden einer ersten Ausnehmung (6) an der Vorderseite (4); Ausbilden einer Beschichtung (8; 8', 8") auf der Vorderseite (4) und auf der ersten Ausnehmung (6); und Bilden einer zweiten Ausnehmung (7) an der Rückseite (5), so dass die Beschichtung (8) zumindest bereichsweise freigelegt wird, wodurch ein Fenster (F) durch den freigelegten Bereich der Beschichtungen gebildet wird.
Abstract:
A method of forming microneedles (28) where through a series of coating and etching processes microneedles are formed from a surface as an array. The microneedles have a bevelled end and bore which are formed as part of the process with no need use a post manufacturing process to finish the microneedle.