Abstract:
A metal/ceramic bonding substrate includes: a ceramic substrate; a metal plate bonded directly to one side of the ceramic substrate; a metal base plate bonded directly to the other side of the ceramic substrate; and a reinforcing member having a higher strength than that of the metal base plate, the reinforcing member being arranged so as to extend from one of both end faces of the metal base plate to the other end face thereof without interrupting that the metal base plate extends between a bonded surface of the metal base plate to the ceramic substrate and the opposite surface thereof.
Abstract:
The object of the present invention is to provide an assembly substrate which is easily handled and capable of suppressing occurrence of warpage, and offers high productivity and economic efficiency, and its manufacturing method. A work board 100 includes an insulating layer 21 on one surface of a substantially rectangular-shaped substrate 11, and electronic components 41 and a plate-like integrated frame 51 are embedded inside the insulating layer 21. The plate-like integrated frame 51 has a plurality of concave portions 53 arranged in parallel at its inner periphery wall 52a, and arranged on a non-placing area of the electronic components 41 so as to surround a plurality of the electronic components 41 (groups).
Abstract:
Various semiconductor chip package substrates with reinforcement and methods of making the same are disclosed. In one aspect, a method of manufacturing is provided that includes providing a package substrate that has a first side and a second side opposite to the first side. The first side has a central area adapted to receive a semiconductor chip. A solder reinforcement structure is formed on the first side of the package substrate outside of the central area to resist bending of the package substrate.
Abstract:
A wiring board (10) adapted for mounting an electronic component has the form of a structure in which a plurality of wiring layers (11, 13, 15) are stacked one on top of another with an insulating layer (12, 14) interposed therebetween and are interconnected through via holes (VH1, VH2) formed in the insulating layers, respectively. A plurality of openings (TH) are formed through the structure in a region (R2) where a wiring is not formed, extending through the structure in a thickness direction thereof. Further, solder resist layers (16, 17) are formed on the outermost wiring layers, respectively, and exposing pad portions (11P, 15P) defined in desired locations in the outermost wiring layers.
Abstract:
Es wird eine Leiterplatte (200) beschrieben, welche aufweist einen Schichtenverbund mit zumindest einer dielektrischen Schicht (114), welche parallel zu einer xy-Ebene, die durch eine x-Achse und eine dazu senkrechte y-Achse aufgespannt ist, eine flächige Ausdehnung aufweist und entlang einer z-Achse, welche senkrecht zu der x-Achse und zu der y-Achse ist, eine Schichtdicke aufweist; und zumindest einer metallischen Schicht (136), welche flächig an der dielektrischen Schicht angebracht ist; wobei der Schichtenverbund entlang der z-Achse frei von einer Symmetrieebene ist, welche parallel zu der xy-Ebene orientiert ist, und die dielektrische Schicht (114) ein dielektrisches Material aufweist, welches ein Elastizitätsmodul E im Bereich zwischen 1 und 20 GPa und entlang der x-Achse und entlang der y-Achse einen thermischen Ausdehnungskoeffizienten im Bereich zwischen 0 und 17 ppm/K hat. Es wird ferner ein Verfahren zum Herstellen einer derartigen Leiterplatte (200) beschrieben. Ferner wird ein Verfahren zum Herstellen einer Leiterplattenstruktur aufweisend zwei asymmetrischen Leiterplatten sowie ein Verfahren zum Herstellen von zwei prozessierten asymmetrischen Leiterplatten (500a, 500b) aus einer größeren Leiterplattenstruktur (505) beschrieben.
Abstract:
A plurality of metal elements formed in an electronic package. The electronic package includes an electronic substrate and a plurality of metal elements disposed in a layer of the substrate. The plurality of metal elements do not serve an electrical function in the layer. Also, each of the plurality of metal elements is floating in the layer. In another embodiment, a method for optimizing the design of a package substrate is provided. The method includes identifying a space in a layer of the substrate that is free of metal and forming a plurality of metal elements in the identified space, where the plurality of metal elements do not serve an electrical function.
Abstract:
A plurality of metal elements formed in an electronic package. The electronic package includes an electronic substrate and a plurality of metal elements disposed in a layer of the substrate. The plurality of metal elements do not serve an electrical function in the layer. Also, each of the plurality of metal elements is floating in the layer. In another embodiment, a method for optimizing the design of a package substrate is provided. The method includes identifying a space in a layer of the substrate that is free of metal and forming a plurality of metal elements in the identified space, where the plurality of metal elements do not serve an electrical function.
Abstract:
A method to provide warpage control of a substrate and an apparatus designed to perform this method are disclosed The method comprises arranging a first surface-modifying material on a first surface of a substrate, wherein the first surface-modifying material has a first pattern comprising one or more thickness to control warpage of the substrate.