Abstract:
Disclosed is a connection structure for a circuit board using a solder bump to arrange circuit boards. The circuit board connection structure includes a solder bump prepared on one of two circuit boards and a perforated part formed at the other of the circuit boards to receive the solder bump. Facing both circuit boards towards each other and inserting the solder bump into the perforated part, the circuit boards are desirably arranged.
Abstract:
A semiconductor package having a solder ball having a double connection structure which reduces a total height of a package on package (POP). The semiconductor package includes a first semiconductor package in which a semiconductor device is mounted on a lower surface of a first substrate, and a through hole is formed in a solder ball pad region of the first substrate, a second semiconductor package in which a semiconductor device is mounted on an upper surface of a second substrate, and a solder ball pad of the second substrate is formed to correspond to the through hole of the first substrate and is mounted on the first substrate, and a common solder ball that is disposed below the first substrate and is connected to the solder ball pad of the second substrate through the through hole.
Abstract:
An interconnection mechanism between plated through holes is disclosed, a first embodiment includes a first substrate having a first plated through hole; a second substrate having a second plated through hole; a metal core is configured in between the two plated through holes; the metal ball has a diameter larger than a diameter of the plated through holes; and melted solder binds the first plated through hole, metal core, and the second plated through hole. A second embodiment includes stacked substrate having a gold plated only on ring pads of the plated through holes; melted solder binds the two gold ring pads.
Abstract:
A flexible printed circuit includes a flexible substrate, a plurality of first conductive wires, and a plurality of second conductive wires. The flexible substrate includes a first surface and a second surface facing the first surface. The first conductive wires are provided on the first surface. The first conductive wires extend from an edge of the flexible substrate to another edge of the flexible substrate. The second conductive wires are provided on the second surface. The second conductive wires extend from an end of the flexible substrate to a predetermined portion of the flexible substrate. A part of each second conductive wire at the predetermined portion of the flexible substrate is electrically connected with the first conductive wire via a conductive structure.
Abstract:
A method of manufacturing a wired circuit board including a metal supporting board. An insulating layer is formed on the metal supporting board in a pattern in which concave portions are formed. A conductive pattern in a pattern having terminals for connecting with external terminals via a molten metal is formed on the metal supporting board and the insulating layer. The terminals include shoulder portions corresponding to the concave portions and are concaved downward from an upper surface. First through holes penetrate the terminals in a thickness direction thereof Second through holes are formed communicating with the first through holes in portions of the insulating layer corresponding to the terminals by removing the concave portions to expose a lower surface of the terminals such that the second through holes penetrate the insulating layer in a thickness direction thereof and have a diameter larger than that of the first through holes.
Abstract:
The disclosure involves the efficient termination of a winding PCB of a planar inductive component to a main PCB, using relatively little space and providing a low-resistance connection. The disclosed methods are especially suitable for planar structures where several winding PCBs, and/or winding PCBs and a main PCB, are all enclosed by the magnetic path components. The methods allow for a winding PCB to simply rest on the main PCB, or other winding PCBs, without any clearance. The disclosure employs mating sets of conductive annular rings with an optional interlocking terminal pin that allows two PCBs to be fixedly coupled together, while preserving a minimum distance between the solder-mask layers of the two PCBs in order to prevent the formation of unwanted electrical connections between the two PCBs. Solder is used to ensure effective coupling in each assembly of mating annular rings and optional terminal pin.