Abstract:
A MEMS device having a channel configured to avoid particle contamination is disclosed. The MEMS device includes a MEMS substrate and a base substrate. The MEMS substrate includes a MEMS device area, a seal ring and a channel. The seal ring provides for dividing the MEMS device area into a plurality of cavities, wherein at least one of the plurality of cavities includes one or more vent holes. The channel is configured between the one or more vent holes and the MEMS device area. Preferably, the channel is configured to minimize particles entering the MEMS device area directly. The base substrate is coupled to the MEMS device substrate.
Abstract:
Module sensible (1) formé d'un boîtier (10) dans lequel sont reportés deséléments sensibles (21, 22) ayant chacun un axe sensible(210,220),les parties externes de deux faces latérales (101, 102) du boîtier et d'une face principale (100) du boîtier sont pourvues d'un premier ensemble (3) de connexions électriques externes reliées en tout ou parties aux éléments sensibles (21, 22), les faces principales et latérales (100, 101, 2) étant adjacentes et perpendiculaires les unes par rapport aux autres, chacune des 10 connexions électriques du premier ensemble (3) de connexions électriques s'étendant sur la face principale (100) et sur l'une des deux faces latérales (101, 102). Par ailleurs, les éléments (21, 22) sont tous de types différents, et les axes sensibles sont tous perpendiculaires entre eux,un des axes sensibles (220) étant perpendiculaire à la face principale(100)du boîtier, un autre des axes sensibles(210) étant parallèle à ladite face principale(100).
Abstract:
Dispositif micro-électronique formé d'un ensemble de microsystèmes électroniques comprenant au moins trois transducteurs inertiels (31, 32, 33) monolithiques non- encapsulés sensibles selon au moins un axe, et leurs électroniques associées, ledit ensemble étant encapsulé dans un boîtier. Le boîtier comprend un volume (6) creusé dans une base (2), les transducteurs (31, 32, 33) étant positionnées dans ce volume creux selon une disposition dans laquelle les trois axes sensibles forment un repère tridimensionnel, chacun des transducteurs (31, 32, 33) étant en contact avec une paroi interne du volume creux (6), un capot (1) solidarisé à cette base (2) assurant la fermeture étanche du boîtier.
Abstract:
A device with multiple encapsulated functional layers, includes a substrate, a first functional layer positioned above a top surface of the substrate, the functional layer including a first device portion, a first encapsulating layer encapsulating the first functional layer, a second functional layer positioned above the first encapsulating layer, the second functional layer including a second device portion, and a second encapsulating layer encapsulating the second functional layer.
Abstract:
A sensing assembly device (100) includes a substrate (102), a chamber above the substrate, a first piezoelectric gyroscope sensor (104) positioned within the chamber, and a first accelerometer (106) positioned within the chamber (150). The environment within the chamber (150) is selected to provide damping to the first accelerometer (106) without unduly affecting the quality factor of the piezoelectric gyroscope (104).
Abstract:
A sensor comprises a substrate (16) and a sensor element (20) anchored to the substrate (16), the substrate (16) and sensor element (20) being of dissimilar materials and having different coefficients of thermal expansion, the sensor element (20) and substrate (16) each having a generally planar face arranged substantially parallel to one another, the sensor further comprising a spacer (26), the spacer (26) being located so as to space at least part of the sensor element (20) from at least part of the substrate (16), wherein the spacer (26) is of considerably smaller area than the area of the smaller of face of the substrate (16) and that of the sensor element (20).
Abstract:
A MEMS device (17) formed by a body (2); a cavity (25), extending above the body; mobile and fixed structures (18, 19) extending above the cavity and physically connected to the body via anchoring regions (16); and electrical-connection regions (10a, 10b, 10c), extending between the body (2) and the anchoring regions (16) and electrically connected to the mobile and fixed structures. The electrical-connection regions (10a, 10b, 10c) are formed by a conductive multilayer including a first semiconductor material layer (5), a composite layer (6) of a binary compound of the semiconductor material and of a transition metal, and a second semiconductor material layer (7).
Abstract:
Systems and methods for manufacturing a chip comprising a plurality of MEMS devices arranged in an integrated circuit are provided. In one aspect, the systems and methods provide for a chip including electronic elements formed on a semiconductor material substrate. The chip further includes a stack of interconnection layers including layers of conductor material separated by layers of dielectric material. MEMS devices are formed within the stack of interconnection layers by applying gaseous HF to a first layer of dielectric material positioned highest in the stack of interconnection layers. The stack of interconnection layers includes at least one unetched layer of dielectric material, and at least one layer of conductor material for routing connections to and from the electronic elements.