Abstract:
A charged particle beam device (1) includes a charged particle optical lens barrel (10), a support housing (20) equipped with the charged particle optical lens barrel (10) thereon, and an insertion housing (30) inserted in the support housing (20). A first aperture member (15) is disposed in the vicinity of the center of the magnetic field of an objective lens, and a second aperture member (15) is disposed so as to externally close an opening part provided at the upper side of the insertion housing (30). Further, when a primary charged particle beam (12) is irradiated to a sample (60) arranged under the lower side of the second aperture member (31), secondary charged particles thus emitted are detected by a detector (16).
Abstract:
A method generates drawing data for performing drawing on a substrate with a plurality of charged particle beams based on pattern data representing a pattern to be drawn on the substrate. The method includes: a grouping step of grouping the plurality of charged particle beams into a plurality of groups based on a displacement amount of an irradiation position of each of the plurality of charged particle beams from target position thereof; and a generating step of generating the drawing data by changing the pattern data with respect to each of the plurality of groups based on the displacement amount of each of the plurality of charged particle beams.
Abstract:
A particle beam system includes a charged particle beam source, a beam blanking module connectable to a data network, a focusing lens, a first beam deflection module connectable to the data network, a calculation module configured to determine a deflection time; and an encoding module.
Abstract:
Various embodiments of the present invention relate to a plasma electron source apparatus. The apparatus comprises a cathode discharge chamber in which a plasma is generated, an exit hole provided in said cathode discharge chamber from which electrons from the plasma are extracted by an accelerating field provided between said cathode discharge chamber and an anode, at least one plasma confinement device, and a switching mechanism for switching the at least one plasma confinement device between a first value allowing for electron extraction from the plasma and a second value prohibiting electron extraction from the plasma. Associated methods are also provided.
Abstract:
A drawing apparatus includes: a detector configured to output a current in accordance with a pulse of a charged particle beam; and a processor including a capacitor and configured to detect a value of a voltage of the capacitor and to obtain an intensity of the pulse based on a value of a capacitance of the capacitor and the detected voltage value. The processor is configured to detect a current output from the detector in accordance with a charged particle beam incident thereon through a voltage drop, to supply a current having a value determined based on the detected current, to the capacitor to detect a value of a voltage of the capacitor, and to obtain the value of the capacitance based on the determined current value and the detected value of the voltage of the capacitor.
Abstract:
An exposure apparatus which draws a pattern on a substrate with a charged particle beam is disclosed. The exposure apparatus includes a detector which detects a charged particle beam, a deflector which deflects the charged particle beam to scan the substrate or the detector with the charged particle beam, and a controller which controls the deflector to scan each of a plurality of scanning ranges on the detector with the charged particle beam, and calculates, on the basis of the charged particle beam amount detected by the detector upon scanning the plurality of scanning ranges, the intensity distribution of the charged particle beam which strikes the detector.
Abstract:
Electron beam is irradiated to a wafer in the midst of steps at predetermined intervals by a plurality of times under a condition in which a junction becomes rearward bias and a difference in characteristic of a time period of alleviating charge in the rearward bias is monitored. As a result, charge is alleviated at a location where junction leakage is caused in a time period shorter than that of a normal portion and therefore, a potential difference is produced between the normal portion and a failed portion and is observed in a potential contrast image as a difference in brightness. By consecutively repeating operation of acquiring the image, executing an image processing in real time and storing a position and brightness of the failed portion, the automatic inspection of a designated region can be executed. Information of image, brightness and distribution of the failed portion is preserved and outputted automatically after inspection.
Abstract:
An ion beam is rapidly switched off during ion implantation on detecting a beam instability. The ion beam is generated or provided by a non-arc discharge based ion source, such as an electron gun ion source or an RF ion source. The ion beam is scanned across a workpiece from a starting location toward an ending location. During the scanning, one or more beam characteristics are monitored, such as beam current, beam flux, shape, and the like. An instability is detected when one or more of the beam characteristics deviate from acceptable values or levels. The ion beam is rapidly turned off on the detected instability.
Abstract:
In an electron beam exposure method in which an article subjected to exposure and an electron beam irradiation spot are moved relative to each other at a continuous speed, the article is exposed at a plurality of irradiation intensities of an electron beam by changing a transmittance of an electron optical system for forming the electron beam irradiation spot on the article.
Abstract:
An electron beam writing system, using discrete electron beams in which the interval of the beams is larger than the size of the beams, generates plural electron beams, on/off controls each of the electron beams according to pattern data to be written, and deflects the electron beams together, thereby performing writing on a wafer. One side of a unit writing area of the electon beams is larger than substantially twice the interval of the electron beams or substantially an integral multiple thereof.