Abstract:
A copper-clad laminate comprising an electrically insulating layer comprising a thermosetting resin and electrically insulating whiskers, and a copper foil formed on at least one side of the insulating layer, the insulating layer and copper foil being integrated by thermal press molding, and a multilayer copper-clad laminate having an interlayer circuit therein, which laminate comprises an interlayer circuit plate, a copper foil for an outer circuit, and an electrically insulating layer interposed therebetween, the circuit plate, copper foil and insulating layer being integrated by thermal press molding, and the insulating layer comprising electrically insulating whiskers dispersed in a thermosetting resin, are effective for producing multilayer printed circuit boards with a very reduced thickness and high wiring density.
Abstract:
A polyphenylene sulphide composition useful for plating is disclosed, comprising a polyphenylene sulphide resin, glass fibres, and potassium titanate fibres. Moulded articles of this composition, when plated after etching, provide a plated article which has a good appearance and good peel strength. Thus these plated articles can be used in outer applications, such as for electrical parts and automobile parts.
Abstract:
A method of manufacturing a flexible electronic device is provided. The method comprises a) filtering a mixture comprising an electrically conducting nanostructured material through a membrane such that the electrically conducting nanostructured material is deposited on the membrane; b) depositing an elastomeric polymerisable material on the electrically conducting nanostructured material and curing the elastomeric polymerisable material thereby embedding the electrically conducting nanostructured material in an elastomeric polymer thus formed; and c) separating the elastomeric polymer with the embedded electrically conducting nanostructured material from the membrane to obtain the flexible electronic device. Flexible electronic device manufactured by the method, and use of the flexible electronic device are also provided.
Abstract:
Embodiments described herein provide for a composition of voltage switchable dielectric (VSD) material that includes a concentration of modified high-aspect ratio (HAR) particles. In an embodiment, at least a portion of the concentration includes HAR particles are surface-modified to provide core-shell HAR particles. As an alternative or addition, a portion of the concentration includes HAR particles that are surface-modified to have activated surfaces.
Abstract:
A transparent conductor including a conductive layer coated on a substrate is described. More specifically, the conductive layer comprises a network of nanowires that may be embedded in a matrix. The conductive layer is optically clear, patternable and is suitable as a transparent electrode in visual display devices such as touch screens, liquid crystal displays, plasma display panels and the like.
Abstract:
A method for the treatment of micro pores (24) within a mica paper (20) that includes obtaining a silane with a molecular weight of between approximately 15 and 300, and adding the silane to the mica paper (20). Then reacting the silane with the inner surface of the micro pores within the mica paper. After this, a resin is impregnated into the mica paper, and the resin binds to the inner surfaces of the micro pores (24) with the mica paper through the silane.
Abstract:
The invention relates to a dispersion for applying a metal layer to an electrically non-conductive substrate containing an organic binder component, a metal component with different metals and/or metal particle shapes, and a solvent component. The invention further relates to methods for producing said dispersion, methods for creating an optionally structured metal layer with the aid of the dispersion, the obtained substrate surfaces, and the use thereof.
Abstract:
In soldering an electronic component, for the purpose of leading molten solder during re-flow, metallic powder (8) is mixed into flux employed so as to intervene between a bump and an electrode. The metallic powder (8) has a flake or dendrite shape including a core segment (8a) of the metal molten at a higher temperature than the liquid phase temperature of solder constituting a solder bump and a surface segment (8b) of the metal with good-wettability for the molten solder and to be solid-solved in the core segment (8a) molten. In the heating by the re-flow, the metallic powder remaining in the flux without being taken in a solder portion is molten and solidified to become substantially spherical metallic particles (18) . Thus, after the re-flow, the metallic powder does not remain in a flux residue in a state where migration is likely to occur, thereby combining both solder connectivity and insurance of insulation.
Abstract:
Die vorliegende Erfindung betrifft eine Dispersion zum Aufbringen einer Metallschicht auf einem elektrisch nicht leitfähigen Substrat enthaltend eine organischen Bindemittelkomponente, eine Metallkomponente mit unterschiedlichen Metallen und/oder Metallteilchenformen sowie einer Lösemittelkomponente. Weiterhin betrifft die Erfindung Verfahren zur Herstellung der Dispersion, Verfahren zur Herstellung einer gegebenenfalls strukturierten Metallschicht mit Hilfe der Dispersion sowie die erhaltenen Substratoberflächen und deren Verwendung.