Abstract:
An EUV radiation source comprising a fuel supply ( 200 ) configured to deliver a droplet of fuel to a plasma generation location ( 201 ), a first laser beam source configured to provide a first beam of laser radiation ( 205 ) incident upon the fuel droplet at the plasma generation location and thereby vaporizes the fuel droplet, and a second laser beam source configured to subsequently provide a second beam of laser radiation ( 205 ) at the plasma generation location, the second beam of laser radiation being configured to vaporize debris particles ( 252 ) arising from incomplete vaporization of the fuel droplet.
Abstract:
A reflector includes a multi layer mirror structure configured to reflect radiation at a first wavelength, and one or more additional layers. The absorbance and refractive index at a second wavelength of the multi layer mirror structure and the one or more additional layers, and the thickness of the multi layer mirror structure and the one or more additional layers, are configured such that radiation of the second wavelength which is reflected from a surface of the reflector interferes in a destructive manner with radiation of the second wavelength which is reflected from within the reflector.
Abstract:
Thermal radiation from a path of a patterned beam is detected. Particles in the path of the patterned beam heat up quickly and radiate energy at a wavelength shorter than that of a surrounding environment. Thus, by detecting the thermal radiation it is possible to detect any particles in the path of the projection beam. If particles are detected, a mask can be sealed or removed, such that particles will not adhere to it.
Abstract:
A lithographic apparatus includes a source configured to generate a radiation beam comprising desired radiation and undesired radiation using a plasma, an illumination system configured to condition the radiation beam and to receive hydrogen gas during operation of the lithographic apparatus, and a support structure constructed to hold a patterning device. The patterning device is capable of imparting the radiation beam with a pattern in its cross-section to form a patterned radiation beam. A substrate table is constructed to hold a substrate, and a projection system is configured to project the patterned radiation beam onto a target portion of the substrate. The lithographic apparatus is configured such that the radiation beam on entering the projection system includes at least 50% of the undesired radiation that is generated by the plasma and includes wavelengths of radiation that interact with the hydrogen gas to generate hydrogen radicals.
Abstract:
A radiation source (e.g., LPP - laser produced plasma source) for generation of extreme UV (EUV) radiation has at least two fuel particle streams having different trajectories. Each stream is directed to cross the path of an excitation (laser) beam focused at a plasma formation region, but the trajectories are spaced apart at the plasma formation region, and the streams phased, so that only one stream has a fuel particle in the plasma formation region at any time, and so that when a fuel particle from one stream is generating plasma and EUV radiation at the plasma generation region, other fuel particles are sufficiently spaced so as to be substantially unaffected by the plasma. The arrangement permits potential doubling of the radiation intensity achievable for a particular fuel particle size.
Abstract:
A method is disclosed to form a patterned epitaxy template, on a substrate, to direct self-assembly of block copolymer for device lithography. A resist layer on a substrate is selectively exposed with actinic (e.g. UV or DUV) radiation by photolithography to provide exposed portions in a regular lattice pattern of touching or overlapping shapes arranged to leave unexposed resist portions between the shapes. Exposed or unexposed resist is removed with remaining resist portions providing the basis for a patterned epitaxy template for the orientation of the self-assemblable block copolymer as a hexagonal or square array. The method allows for simple, direct UV lithography to form patterned epitaxy templates with sub-resolution features.
Abstract:
A method is disclosed to form a patterned template on a substrate, to direct orientation of a self-assemblable block copolymer. The method involves providing a resist layer of a positive tone resist on the substrate and overexposing the resist with actinic (e.g. UV) radiation by photolithography to expose a continuous region of the resist layer with a sub-resolution unexposed resist portion at the interface between the resist and the substrate. The resist portion remaining at the interface, after removal of the exposed region, provides a basis for a chemical epitaxy template. The method may allow for simple, direct photolithography to form a patterned chemical epitaxy template and optionally include an accurately co-aligned graphoepitaxy feature and/or a substrate alignment feature.
Abstract:
An EUV lithographic apparatus (100) comprises a source collector apparatus (SO) in which the extreme ultraviolet radiation is generated by exciting a fuel to provide a plasma (210) emitting the radiation. The source collector apparatus (SO) includes a chamber (310) in fluid communication with a guide way (320) external to the chamber (310). A pump (BPS) for circulating buffer gas is part of the guide way (320), and provides a closed loop buffer gas flow (222). The gas flowing through the guide way (302) traverses a gas decomposer (TD1) wherein a compound of fuel material and buffer gas material is decomposed, so that decomposed buffer gas material can be fed back into the closed loop flow path (222).
Abstract:
A radiation source (SO) is configured to generate extreme ultraviolet radiation. The radiation source (SO) includes a plasma formation site (2) located at a position in which a fuel will be contacted by a beam of radiation (5) to form a plasma, an outlet (16) configured to allow gas to exit the radiation source (SO), and a contamination trap (23) at least partially- located inside the outlet (16). The contamination trap is configured to trap (23) debris particles that are generated with the formation of the plasma.
Abstract:
A lithographic apparatus include an optical element that includes an oriented carbon nanotube sheet. The optical element has an element thickness in the range of about 20-500 nm and has a transmission for EUV radiation having a wavelength in the range of about 1-20 nm of at least about 20% under perpendicular irradiation with the EUV radiation. The oriented carbon nanotube sheet may be used per se as optical element, and may be designed to reduce debris and/or improve the ratio of EUV/non-desired radiation. The sheet, due to its strength, does not necessarily need a support. The optical element of the invention may be unsupported.