Abstract:
A method of transferring semiconductor devices from a first substrate to a second substrate, including providing the semiconductor devices which are between the first substrate and the second substrate. The semiconductor devices include a first semiconductor device and a second semiconductor device, and the first semiconductor device and the second semiconductor device have a first gap between thereof. The first semiconductor device and the second semiconductor device are moved from the first substrate by a picking unit. The picking unit, the first semiconductor device, and the second semiconductor device are moved close to the second substrate. The picking unit has a space apart from the second substrate. The first semiconductor device and the second semiconductor device are transferred from the picking unit to the second substrate. The he first semiconductor device and the second semiconductor device on the second substrate have a second gap between thereof. The first gap and the second gap are different.
Abstract:
A semiconductor light-emitting device comprises an epitaxial structure comprising a first semiconductor stack, a second semiconductor stack, and an active layer between the first semiconductor stack and second semiconductor stack for emitting a light; and a main light-extraction surface on the first semiconductor stack, wherein the light passes through the main light-extraction surface. The main light-extraction surface comprises a first light-extraction region, a second light-extraction region, and a maximum near-field luminous intensity. The distribution of the near-field luminous intensity in the first light-extraction region is between 70% and 100% of the maximum near-field luminous intensity, the distribution of the near-field luminous intensity in the second light-extraction region is between 0% and 70% of the maximum near-field luminous intensity. A ratio of an area of the first light-extraction region to an area of the second light-extraction region is between 0.25 and 0.45.
Abstract:
A method of manufacturing a light-emitting device comprises the steps of: providing a semiconductor light-emitting stack having a first connecting surface and a first alignment pattern; providing a substrate having a second connecting surface and a second alignment pattern; detecting the position of the first alignment pattern and the position of the second alignment pattern; and moving at least one of the substrate and the semiconductor light-emitting stack to make the first alignment pattern be aligned with the second alignment pattern.
Abstract:
A method of transferring multiple semiconductor devices from a first substrate to a second substrate comprises the steps of forming the multiple semiconductor devices adhered on the first substrate, wherein the multiple semiconductor devices comprises a first semiconductor device and a second semiconductor device, and the first semiconductor device and the second semiconductor device have a first gap between thereof; separating the first semiconductor device and the second semiconductor device from the first substrate; sticking the first semiconductor device and the second semiconductor device to a surface of the second substrate, wherein the first semiconductor device and the second semiconductor device have a second gap between thereof; wherein the first gap and the second gap are different.
Abstract:
A semiconductor light-emitting device comprises an epitaxial structure comprising an main light-extraction surface, a lower surface opposite to the main light-extraction surface, a side surface connecting the main light-extraction surface and the lower surface, a first portion and a second portion between the main light-extraction surface and the first portion, wherein a concentration of a doping material in the second portion is higher than that of the doping material in the first portion and, in a cross-sectional view, the second portion comprises a first width near the main light-extraction surface and second width near the lower surface, and the first width is smaller than the second width.
Abstract:
A semiconductor light-emitting device comprises an epitaxial structure comprising an main light-extraction surface, a lower surface opposite to the main light-extraction surface, a side surface connecting the main light-extraction surface and the lower surface, a first portion and a second portion between the main light-extraction surface and the first portion, wherein a concentration of a doping material in the second portion is higher than that of the doping material in the first portion and, in a cross-sectional view, the second portion comprises a first width near the main light-extraction surface and second width near the lower surface, and the first width is smaller than the second width.
Abstract:
A method of transferring multiple semiconductor devices from a first substrate to a second substrate comprises the steps of forming the multiple semiconductor devices adhered on the first substrate, wherein the multiple semiconductor devices comprises a first semiconductor device and a second semiconductor device, and the first semiconductor device and the second semiconductor device have a first gap between thereof; separating the first semiconductor device and the second semiconductor device from the first substrate; sticking the first semiconductor device and the second semiconductor device to a surface of the second substrate, wherein the first semiconductor device and the second semiconductor device have a second gap between thereof; wherein the first gap and the second gap are different.
Abstract:
A light-emitting device comprises a semiconductor light-emitting stack comprising a first connecting layer; and a substrate under the semiconductor light-emitting stack, wherein the substrate comprises a second connecting layer connecting the first connecting layer; wherein the first connecting layer comprises a first region, a first pattern, and a first connecting surface; wherein a difference of a reflectivity between the first pattern and the first region is larger than 20%; wherein the second connecting layer comprises a second region and a side of the first pattern fully contact the second region.
Abstract:
The present disclosure provides a method of manufacturing a light-emitting device, which comprises providing a first substrate and a plurality of semiconductor stacked blocks on the first substrate, and each of the plurality semiconductor stacked blocks comprises a first conductive-type semiconductor layer, a light-emitting layer on the first conductive-type semiconductor layer, and a second conductive-type semiconductor layer on the light-emitting layer; wherein there is a trench separating two adjacent semiconductor stacked blocks on the first substrate, and a width of the trench is less than 10 μm; and conducting a first separating step to separate a first semiconductor stacked block of the plurality of semiconductor stacked blocks from the first substrate and keep a second semiconductor stacked block on the first substrate.