THERMOCOMPRESSION BONDING IN INTEGRATED CIRCUIT PACKAGING

    公开(公告)号:CA2024012A1

    公开(公告)日:1991-02-26

    申请号:CA2024012

    申请日:1990-08-24

    Applicant: IBM

    Abstract: A contact member for thermocompression bonding in integrated circuit packaging has on a conductor end a uniform texture deformable layer with a hardness value in the range of that of soft gold which is approximately 90 on the Knoop scale and with a rough surface morphology having ridges with approximately 1 micrometer modulation frequency and a depth between ridges of from 1/4 to 1/2 that of the average integrated circuit pad. The deformable layer is produced by plating gold in a strong electronegative plating bath within a range of 0.03 to 0.05 mA/sq.cm. current density. Plating apparatus, for plating different areas, with different electronegative conditions, with separate independently powered anodes, is provided.

    LEAD-FREE TIN-SILVER-COPPER ALLOY SOLDER COMPOSITION

    公开(公告)号:CA2475491C

    公开(公告)日:2012-03-27

    申请号:CA2475491

    申请日:2003-02-11

    Applicant: IBM

    Abstract: A solder composition and associated method of formation. The solder composition comprises a substantially lead-free alloy that includes tin (Sn), silver (Ag), and copper. The tin has a weight percent concentration in the alloy of at least about 90 %. The silver has a weight percent concentration X in the alloy. X is sufficiently small that formation of Ag3Sn plates (57, 58) is substantially suppressed when the alloy in a liquefied state is being solidified by being cooled to a lower temperature at which the solid Sn phase is nucleated. This lower temperature corresponds to an undercooling .delta.T relative to the eutectic melting temperature of the alloy. Alternatively, X may be about 4.0 % or less, wherein the liquefied alloy is cooled at a cooling rate that is high enough to substantially suppress Ag3Sn plate (57, 58) formation in the alloy. The copper has a weight percent concentration in the alloy not exceeding about 1.5 %.

    Lead-free tin-silver-copper alloy solder composition

    公开(公告)号:AU2003209129A8

    公开(公告)日:2003-09-09

    申请号:AU2003209129

    申请日:2003-02-11

    Applicant: IBM

    Abstract: A solder composition and associated method of formation. The solder composition comprises a substantially lead-free alloy that includes tin (Sn), silver (Ag), and copper. The tin has a weight percent concentration in the alloy of at least about 90%. The silver has a weight percent concentration X in the alloy. X is sufficiently small that formation of Ag3Sn plates is substantially suppressed when the alloy in a liquefied state is being solidified by being cooled to a lower temperature at which the solid Sn phase is nucleated. This lower temperature corresponds to an undercooling deltaT relative to the eutectic melting temperature of the alloy. Alternatively, X may be about 4.0% or less, wherein the liquefied alloy is cooled at a cooling rate that is high enough to substantially suppress Ag3Sn plate formation in the alloy. The copper has a weight percent concentration in the alloy not exceeding about 1.5%.

    LEAD-FREE TIN-SILVER-COPPER ALLOY SOLDER COMPOSITION

    公开(公告)号:AU2003209129A1

    公开(公告)日:2003-09-09

    申请号:AU2003209129

    申请日:2003-02-11

    Applicant: IBM

    Abstract: A solder composition and associated method of formation. The solder composition comprises a substantially lead-free alloy that includes tin (Sn), silver (Ag), and copper. The tin has a weight percent concentration in the alloy of at least about 90%. The silver has a weight percent concentration X in the alloy. X is sufficiently small that formation of Ag3Sn plates is substantially suppressed when the alloy in a liquefied state is being solidified by being cooled to a lower temperature at which the solid Sn phase is nucleated. This lower temperature corresponds to an undercooling deltaT relative to the eutectic melting temperature of the alloy. Alternatively, X may be about 4.0% or less, wherein the liquefied alloy is cooled at a cooling rate that is high enough to substantially suppress Ag3Sn plate formation in the alloy. The copper has a weight percent concentration in the alloy not exceeding about 1.5%.

Patent Agency Ranking