Abstract:
A wafer processing system is provided for use with a driver and a material supply source. The driver is operable to generate a driving signal. The material supply source is operable to provide a material. The wafer processing system includes an upper confinement chamber portion, a lower confinement chamber portion, a confinement ring, and an electro-static chuck. The upper confinement chamber portion has an upper confinement chamber portion inner surface. The lower confinement chamber portion is detachably disposed in contact with the upper confinement chamber portion. The lower confinement chamber portion has a lower confinement chamber portion inner surface. The confinement ring is removably disposed in contact with the upper confinement chamber portion inner surface and the lower confinement chamber portion inner surface. The confinement ring has a confinement ring inner surface. The electro-static chuck has an electro-static chuck upper surface and is arranged to receive the driving signal. The upper confinement chamber portion, the lower confinement chamber portion, the confinement ring and the electro-static chuck are arranged such that the upper confinement chamber portion inner surface, the lower confinement chamber portion inner surface, the confinement ring inner surface and the electro-static chuck upper surface surround a plasma-forming space that is capable of receiving the material. The upper confinement chamber portion, the lower confinement chamber portion, the confinement ring and the electro-static chuck are operable to transform the material into a plasma when the electro-static chuck receives the driving signal. The confinement ring has a non-rectangular cross section.
Abstract:
Showerhead electrode assemblies are disclosed, which include a showerhead electrode adapted to be mounted in an interior of a vacuum chamber; an optional backing plate attached to the showerhead electrode; a thermal control plate attached to the backing plate or to the showerhead electrode at multiple contact regions across the backing plate; and at least one interface member separating the backing plate and the thermal control plate, or the thermal control plate and showerhead electrode, at the contact regions, the interface member having a thermally and electrically conductive gasket portion and a particle mitigating seal portion. Methods of processing semiconductor substrates using the showerhead electrode assemblies are also disclosed.
Abstract:
Plasma confinement ring assemblies are provided that include confinement rings adapted to reach sufficiently high temperatures on plasma-exposed surfaces of the rings to avoid polymer deposition on those surfaces. The plasma confinement rings include thermal chokes adapted to localize heating at selected portions of the rings that include the plasma exposed surfaces. The thermal chokes reduce heat conduction from those portions to other portions of the rings, which causes selected portions of the rings to reach desired temperatures during plasma processing.
Abstract:
A system, method and apparatus for increasing an energy level of the ions emitted from a plasma include a plasma chamber, including a top electrode and a bottom electrode, a multiple RF sources, at least one of the RF sources being coupled to the bottom electrode. A phase locking circuit is coupled to at least two of the RF sources hereafter designated the first RF source and the second RF source. A controller is coupled to the plasma chamber, each of the RF sources and the phase locking circuit. The controller including operating system software, multiple logic circuits and a process recipe.
Abstract:
Abstract A showerhead electrode, a gasket set and an assembly thereof in plasma reaction chamber for etching semiconductor substrates are provided with improved a gas injection hole pattern, positioning accuracy and reduced warping, which leads to enhanced uniformity of plasma processing rate. A method of assembling the inner electrode and gasket set to a supporting member includes simultaneous engagement of cam locks.
Abstract:
A time-dependent substrate temperature to be applied during a plasma process is determined. The time-dependent substrate temperature at any given time is determined based on control of a sticking coefficient of a plasma constituent at the given time. A time-dependent temperature differential between an upper plasma boundary and a substrate to be applied during the plasma process is also determined. The time-dependent temperature differential at any given time is determined based on control of a flux of the plasma constituent directed toward the substrate at the given time. The time-dependent substrate temperature and time- dependent temperature differential are stored in a digital format suitable for use by a temperature control device defined and connected to direct temperature control of the upper plasma boundary and the substrate. A system is also provided for implementing upper plasma boundary and substrate temperature control during the plasma process.
Abstract:
A radio frequency (RF) ground return arrangement for providing a low impedance RF return path for a RF current within a processing chamber of a plasma processing chamber during processing of a substrate is provided. The RF ground return arrangement includes a set of confinement rings, which is configured to surround a confined chamber volume that is configured for sustaining a plasma for etching the substrate during substrate processing. The RF ground return arrangement also includes a lower electrode support structure. The RF ground return arrangement further includes a RF contact-enabled component, which provides a RF contact between the set of confinement rings and the lower electrode support structure such that the low impedance RF return path facilitates returning the RF current back to an RF source.