Method of making released micromachined structures by directional etching
    211.
    发明授权
    Method of making released micromachined structures by directional etching 失效
    通过定向蚀刻制造释放的微加工结构的方法

    公开(公告)号:US6086774A

    公开(公告)日:2000-07-11

    申请号:US993924

    申请日:1997-12-18

    Abstract: A method of making released structures by using at least two directional etching steps. Cantilevers, bridges and many other structures can be made with the present invention. In a preferred embodiment, two directional etching steps are performed at opposing angles nonnormal to the substrate surface such that the substrate is undercut and a structure is released. Alternatively, more than two directional etching steps may be performed at various angles. For example, the substrate may be rotated continuously during the directional etching process. A cantilever formed by the method of the present invention necessarily has a substantially triangular cross section. Directional etching processes that can be used include focused ion beam etching and ECR plasma etching. Some directional etching processes may require the use of a patterned etch resist layer. Other etching processes such as focused ion beam etching may use scanning techniques to select which regions are etched. A backside etch can be performed to remove remaining substrate material under the released micromachined structure. The method is particularly well suited for making released cantilevers.

    Abstract translation: 通过使用至少两个方向蚀刻步骤来制造释放结构的方法。 悬臂,桥梁和许多其他结构可以用本发明制成。 在优选实施例中,以相对于基板表面非正常的角度执行两个定向蚀刻步骤,使得基底被切削并且结构被释放。 或者,可以以各种角度执行多于两个的定向蚀刻步骤。 例如,可以在定向蚀刻工艺期间连续旋转衬底。 通过本发明的方法形成的悬臂必须具有基本上三角形的横截面。 可以使用的定向蚀刻工艺包括聚焦离子束蚀刻和ECR等离子体蚀刻。 一些定向蚀刻工艺可能需要使用图案化的抗蚀剂层。 诸如聚焦离子束蚀刻的其它蚀刻工艺可以使用扫描技术来选择蚀刻哪些区域。 可以执行背面蚀刻以在释放的微加工结构下去除剩余的基底材料。 该方法特别适用于制备释放的悬臂。

    Component of a biosensor and process for production
    219.
    发明授权
    Component of a biosensor and process for production 有权
    生物传感器的组成部分和生产过程

    公开(公告)号:US09364807B2

    公开(公告)日:2016-06-14

    申请号:US13635972

    申请日:2011-03-10

    Abstract: The invention relates to a component (4) of a biosensor, comprising at least one first device (6) for receiving a sample liquid, wherein the device (6) is connected via a distributor channel (7) to further receiving devices (8 to 11), into each of which a feed channel (71, 72, 73, 74) branching off from the distributor channel (7) opens, and the feed channels (71, 72, 73, 74) are arranged in succession in flow direction (S) of the sample liquid passed on through the distributor channel (7). In accordance with the invention, it is envisaged that, in the distributor channel (7), in each case between two immediately successive feed channels (71, 72; 72, 73; 73, 74) in flow direction (S), at least one region (K) for at least temporary slowing or stoppage of the capillary flow of the sample liquid has been inserted. It is thus possible to control the capillary flow of the sample liquid such that always only one receiving device (8, 9, 10, 11) is filled with the volume flow of sample liquid available before the next is filled, and effectively simultaneous filling of the receiving devices (8, 9, 10, 11) is prevented. This leads to rapid and complete filling of the respective receiving device (8, 9, 10, 11). Additionally presented is a process with which the regions (K) can be inserted into the distributor channel (7) in a simple manner.

    Abstract translation: 本发明涉及生物传感器的组件(4),其包括用于接收样品液体的至少一个第一装置(6),其中所述装置(6)经由分配器通道(7)连接到另外的接收装置(8至 其中,从分配器通道(7)分支出的进料通道(71,72,73,74)打开,并且进料通道(71,72,73,74)在流动方向上连续地排列 (S)通过分配器通道(7)通过的样品液体。 根据本发明,设想在分配器通道(7)中,在每种情况下,在流动方向(S)处的两个紧邻的供给通道(71,72; 72,73; 73,74)之间至少 已经插入了用于至少暂时放慢或停止样品液体的毛细管流动的区域(K)。 因此,可以控制样品液体的毛细管流动,使得总是只有一个接收装置(8,9,10,11)填充下一个填充之前可用的样品液体的体积流量,并且有效地同时填充 接收装置(8,9,10,11)被防止。 这导致相应的接收装置(8,9,10,11)的快速和完全的填充。 另外提出了一种可以简单地将区域(K)插入到分配器通道(7)中的过程。

Patent Agency Ranking