Abstract:
Fusing nanowire inks are described that can also comprise a hydrophilic polymer binder, such as a cellulose based binder. The fusing nanowire inks can be deposited onto a substrate surface and dried to drive the fusing process. Transparent conductive films can be formed with desirable properties.
Abstract:
An electronic assembly includes a substrate having in a first zone a low contrast first conductive pattern; a high contrast fiducial mark in a second zone of the substrate different from the first zone, wherein the fiducial mark and the first conductive pattern are in registration; and a second conductive pattern aligned with the first conductive pattern.
Abstract:
Provided are anisotropic conductive materials, electronic devices including anisotropic conductive materials, and/or methods of manufacturing the electronic devices. An anisotropic conductive material may include a plurality of particles in a matrix material layer. At least some of the particles may include a core portion and a shell portion covering the core portion. The core portion may include a conductive material that is in a liquid state at a temperature greater than 15 °C and less than or equal to about 110°C or less. For example, the core portion may include at least one of a liquid metal, a low melting point solder, and a nanofiller. The shell portion may include an insulating material. A bonding portion formed by using the anisotropic conductive material may include the core portion outflowed from the particle and may further include an intermetallic compound.
Abstract:
A method for making an electronic assembly includes applying a conductive adhesive to a resist layer overlying a patterned conductive nanowire layer on a substrate and engaging an electrical contact of an electronic component with the conductive adhesive to provide an electrical connection between the electronic component and the conductive nanowire layer.
Abstract:
A conductive film includes a base film, a primer layer formed on the base film, the primer layer having voids, and a conductive layer formed on the primer layer. The conductive layer includes a conductor that contains a nano-material forming a network structure.
Abstract:
An electronic assembly includes a substrate having in a first zone a low contrast first conductive pattern; a high contrast fiducial mark in a second zone of the substrate different from the first zone, wherein the fiducial mark and the first conductive pattern are in registration; and a second conductive pattern aligned with the first conductive pattern.
Abstract:
Transparent conductive films are disclosed and claimed that exhibit high light transmittance, low surface resistance, and superior peel-off adhesion. Such films are useful in electronics applications.