Graphene channel-based devices and methods for fabrication thereof

    公开(公告)号:GB2493238B

    公开(公告)日:2014-04-16

    申请号:GB201208558

    申请日:2011-04-26

    Applicant: IBM

    Abstract: Graphene-channel based devices and techniques for the fabrication thereof are provided. In one aspect, a semiconductor device includes a first wafer having at least one graphene channel formed on a first substrate, a first oxide layer surrounding the graphene channel and source and drain contacts to the graphene channel that extend through the first oxide layer; and a second wafer having a CMOS device layer formed in a second substrate, a second oxide layer surrounding the CMOS device layer and a plurality of contacts to the CMOS device layer that extend through the second oxide layer, the wafers being bonded together by way of an oxide-to-oxide bond between the oxide layers. One or more of the contacts to the CMOS device layer are in contact with the source and drain contacts. One or more other of the contacts to the CMOS device layer are gate contacts for the graphene channel.

    A graphene transistor with a self-aligned gaTE

    公开(公告)号:GB2497248A

    公开(公告)日:2013-06-05

    申请号:GB201305445

    申请日:2011-07-20

    Applicant: IBM

    Abstract: A graphene-based field effect transistor includes source and drain electrodes that are self-aligned to a gate electrode. A stack of a seed layer and a dielectric metal oxide layer is deposited over a patterned graphene layer. A conductive material stack of a first metal portion and a second metal portion is formed above the dielectric metal oxide layer. The first metal portion is laterally etched employing the second metal portion, and exposed portions of the dielectric metal oxide layer are removed to form a gate structure in which the second metal portion overhangs the first metal portion. The seed layer is removed and the overhang is employed to shadow proximal regions around the gate structure during a directional deposition process to form source and drain electrodes that are self-aligned and minimally laterally spaced from edges of the gate electrode.

Patent Agency Ranking