Abstract:
Provided are an optical fiber which exhibits a small increment of loss due to the OH group and which is suitable for transmitting signals in a band including a wavelength of 1,380 nm, and methods for manufacturing such optical fiber, an optical fiber preform, and a fluorine doped silica glass article. The fluorine doped silica glass article is produced by (1) depositing silica glass soot on a starting substrate to produce a silica glass soot deposit body and (2) heating the silica glass soot deposit body in an atmosphere including at least a first gas containing fluorine atoms and a second gas having deoxidizing property and containing no fluorine atom nor hydrogen atom. An optical fiber preform and an optical fiber are produced by the use of this glass body. The optical fiber has a clad containing fluorine and exhibits a transmission loss of 0.32 dB/km or less at a wavelength of 1,380 nm.
Abstract:
The present invention is to provide an optical member for Extreme Ultra-Violet Lithography which is used for a reflective type mask, a mirror, etc. for EUVL and has excellent flatness and surface roughness on an optical surface thereof and in which chamfer parts are inhibited from being chipped. The present invention relates to a surface treatment method of an optical member for EUVL, including applying Gas Cluster Ion Beam etching using a source gas containing at least one of fluorine and chlorine to an optical surface of an optical member for EUVL, wherein the optical member is made of a silica glass material having an OH concentration of 100 ppm or more, containing TiO2 and containing SiO2 as a major component.
Abstract:
What is disclosed includes OD-doped synthetic silica glass capable of being used in optical elements for use in lithography below about 300 nm. OD-doped synthetic silica glass was found to have significantly lower polarization-induced birefringence value than non-OD-doped silica glass with comparable concentration of OH. Also disclosed are processes for making OD-dopes synthetic silica glasses, optical member comprising such glasses, and lithographic systems comprising such optical member. The glass is particularly suitable for immersion lithographic systems due to the exceptionally low polarization-induced birefringence values at about 193 nm.
Abstract:
An electrodeless lamp and process for emitting ultraviolet and/or vacuum ultraviolet radiation comprises an envelope formed of an ultra-pure and/or low-defect quartz material and an ultraviolet and/or vacuum ultraviolet emissive material disposed in the interior region of the envelope. The electrodeless lamp formed of the ultra-pure and/or low-defect quartz material minimizes degradation during use.
Abstract:
First of all, there is provided a production process of a synthetic quartz glass which has less impurity, has a high-temperature viscosity characteristic equal to or more than that of a natural quartz glass, and hardly deforms even in a high-temperature environment, and especially a production process of a highly heat resistant synthetic quartz glass which is free from the generation of bubbles and is dense. Secondly, there is provided a highly heat resistant synthetic quartz glass body which is easily obtained by the production process of the present invention, and especially a transparent or black quartz glass body which is free from the generation of bubbles, is dense, has high infrared absorption rate and emission rate, and has an extremely high effect for preventing diffusion of alkali metal. The process is a process of producing a highly heat resistant quartz glass body having an absorption coefficient at 245 nm of 0.05 cm -1 or more, and the silica porous body was subjected to a reduction treatment, followed by baking, thereby forming a dense glass body.
Abstract:
A method of forming an alkali metal oxide-doped optical fiber by diffusing an alkali metal into a surface of a glass article is disclosed. The silica glass article may be in the form of a tube or a rod, or a collection of tubes or rods. The silica glass article containing the alkali metal, and impurities that may have been unintentionally diffused into the glass article, is etched to a depth sufficient to remove the impurities. The silica glass article may be further processed to form a complete optical fiber preform. The preform, when drawn into an optical fiber, exhibits a low attenuation.
Abstract:
A method for manufacturing an optical article including the steps of providing a substrate tube; forming one or more cladding layers inside the substrate tube, the one or more cladding layers including an innermost cladding layer; forming a concentric fluorine reservoir adjacent to the innermost cladding layer; and forming a core adjacent to the fluorine reservoir and concentric with the one or more outer cladding layers. The fluorine concentration in the fluorine reservoir is higher than the fluorine concentration in either the core or the innermost cladding layer.
Abstract:
A synthetic quartz glass to be used for light in a vacuum ultraviolet region with a wavelength of at most 175 nm, which is characterized in that the OH group content in the synthetic quartz glass is less than 10 ppm, and it contains substantially no reduction type defects.