Abstract:
본 발명은 III-V 화합물 반도체 중에서 청록색의 빛을 나타낼 수 있는 GaN(갈륨나이트라이드) 단결정 반도체 박막의 제조 방법에 관한 것으로, GaAs를 400℃이상의 온도로 가열할때 GaAs의 표면으로 부터 As원자가 빠져 나오는 현상을 이용하는 것으로, 이 상황에서 NH 3 (암모니아 가스)의 플라즈마 상태의 분압을 이용하여 N원자를 첨가시킴으로써, As가 빠져나온 자리를 N원자로 치완하여 GaN단결정 반도체 박막을 성장시키는 제조방법이다.
Abstract:
본 발명은 높은 모빌리티(mobility)와 조절 가능한 면전하 미도(controllable sheet carrier density)를 가지는 2차원 전자기체(2dimensional electron gas)를 조셉슨 접합(Josephson junction)으로 이용함으로써, 용이한 소자 제작 및 소자 자체의 신뢰성및 조절성(reliability, controllability)이 높아지며, 게이트(gate)장착 또는 접합 부분(junction)구조의 변형을 통하여 새로운 소자 (device)의 개념도입이 가능하고, 확립된 최첨단의 기술의 보유하고 있는 반도체 2차원 전자기체를 이용함으로써, 초전도체와 반도체간의 접합이 가능하여 집접회로(integrated cureuit)의 구현이 용이하므로 마이크로 파 또는 밀리미터파의 소스 및 디렉터, 트랜지스터와 같은 소자로서의 응용성이 매우 높다.
Abstract:
The system provides a common channel signal processing function between the exchanges, corresponding to CCITT No.7. The system comprises: message transfer signal processing unit (1); B- bus (6) for information exchanging between processors, interworking processing unit (2) to control ISDN subscriber and trunk line, and call process informations; CEPT trunk control unit (3) for selecting a specificinter exchanging channel; CEPT digital trunk unit (4) for interfacing between exchanges; line multiplexing unit (5) for multiplexing switching channels to provide level 3 module communication between signaling points.
Abstract:
The message transfer part (MTP) system transplants common channel signalling (CCS) number 7 protocol to TDX-1 family. The MTP system includes a level 3 function controller (20) for executing signal network function, a memoy (30) connected to a VME bus, a message input/output unit (40) for analyzing message transmitted from the level 3 function controller through a VME bus and for sending message transmitted from external equipments to the level 3 function controller (30), a B-bus (70) for connecting the message input/output unit (40) to a DTLP, a STG bus (50) for connecting signal network function unit and a signal link function unit, and terminal (10) connected to the message input/output unit (40) and a data link concentrator.
Abstract:
본 발명은 소스 및 드레인 전극이 금속실리사이드로 구성되고, 나노선을 채널로 이용하는 쇼트키 장벽 나노선 전계 효과 트랜지스터(Schottky Barrier Nano Wire Field Effect Transistor) 및 그 제조방법에 관한 것으로, 이를 위해 본 발명은 기판에서 부양되어(suspended) 나노선으로 형성된 채널; 상기 채널의 양끝단과 전기적으로 연결되어 상기 기판 상부에 금속실리사이드로 형성된 소스 및 드레인 전극; 상기 채널을 둘러싸는 형태로 마련된 게이트전극 및 상기 채널과 게이트전극 사이에 형성된 게이트절연막을 포함하는 쇼트키 장벽 나노선 전계 효과 트랜지스터를 제공한다.
Abstract:
본 발명은 소스 및 드레인 전극을 촉매로 하여 채널영역을 결정화시킬 수 있는 쇼트키 장벽 박막 트랜지스터(Schottky Barrier Thin Film Transistor) 제조방법에 관한 것으로, 이를 위한 본 발명의 쇼트키 장벽 박막 트랜지스터의 제조방법은 기판 상부에 비정질실리콘 활성층을 형성하는 단계; 상기 비정질실리콘 활성층의 채널영역과 쇼트키접합(schottky junction)을 형성하도록 소스 및 드레인 전극을 금속실리사이드로 형성하는 단계 및 상기 소스 및 드레인 전극을 촉매로 하여 상기 채널영역의 비정질실리콘을 폴리실리콘으로 결정화시키는 단계를 포함하고 있으며, 이를 통하여 공정과정을 단순화시킬 수 있으며, 공정비용을 절감할 수 있는 효과가 있다. 비정질실리콘, 폴리실리콘, 쇼트키장벽, 박막트랜지스터, 결정화
Abstract:
A schottky barrier tunnel transistor is provided to lower the driving voltage of a semiconductor device and improve an operation speed by preventing a depletion phenomenon from occurring between a gate electrode and a gate insulation layer. A gate insulation layer(230) made of a metal oxide is formed on a channel region(260) of a silicon substrate. A gate electrode(240) made of a metal material is formed on the gate insulation layer. A source/drain electrode(220) made of metal silicide is formed on the silicon substrate, self-aligned with both sides of the gate electrode. The upper area of the channel region can be the same as the lower area of the gate electrode.
Abstract:
Substrates for analyzing the coverage of self-assembled molecules are provided to measure efficiently the presence and reaction degree of functional groups on the surface of self-assembled molecules by using nanoparticles without use of complicated methods such as FT-IR(Fourier Transform InfraRed), XPS(X-ray photoelectron spectroscopy) and fluorescence method. A substrate for analyzing the coverage of self-assembled molecules comprises: a substrate(100) for immobilizing biomaterials; a self-assembled molecule layer(102) formed on the substrate and having a functional group capable of reacting with an amine group; a capture DNA molecule(200) having the amine group to be combined with the self-assembled molecule layer; and a probe DNA molecule combining with the capture DNA molecule and having nanoparticles on the surface, wherein the functional group capable of reacting with an amine group is -SH, -NH2, -Si(OCH3)3, -Si(OC2H5)3 and -Si(Cl)3. Further, the substrate(100) for immobilizing biomaterial is one selected from a group consisting of glass, polycarbonate, polyester, polyethylene, polypropylene and wafer.
Abstract:
A schottky barrier nano-wire field effect transistor and a manufacturing method thereof are provided to secure thermal stability by forming a source/drain electrode using metal silicide when the source/drain electrode is jointed to a nano-wire. A channel(140) made of nano-wire is formed on a substrate(100). A source/drain electrode(150) made of metal silicide is formed on the upper surface of a substrate, and is electrically connected to both ends of the channel. A gate electrode(170) is formed to enclose the channel, and a gate insulating layer(160) is formed between the channel and the gate electrode. The nano-wire is made of any one selected from a group consisting of ZnO, V2O5, GaN and AlN.
Abstract:
A method for manufacturing a semiconductor device and a semiconductor device manufactured using the same are provided to form a semiconductor device to which a metal silicide is adopted without a space structure by forming a gate electrode with a conductive compound. A gate dielectric is formed on a substrate(10). A conductive compound, which is not reacted with a metal layer to be formed through a subsequent process, is formed on the gate dielectric. The conductive compound and the gate dielectric are etched to form a gate electrode(12A). The metal layer is formed on a top of the substrate including the gate electrode. The metal and silicon contained in the substrate are reacted to form a source and drain region(14) comprised of a metal silicide layer on the substrate exposed at both sides of the gate electrode. After forming the metal silicide layer, the remaining metal layer which is not reacted with the silicon is removed.