Abstract:
A curved mirrored surface (78) is used to collect radiation scattered by a sample surface (76a) and originating from a normal illumination beam (70) and an oblique illumination beam (90). The collected radiation is focused to a detector (80). Scattered radiation originating from the normal and oblique illumination beams may be distinguished by employing radiation at two different wavelengths, by intentionally introducing an offset between the spots illuminated by the two beams or by switching the normal and oblique illumination beams (70, 90) on and off alternately. Beam position error caused by change in sample height may be corrected by detecting specular reflection of an oblique illumination beam and changing the direction of illumination in response thereto. Butterfly-shaped spatial filters may be used in conjunction with curved mirror radiation collectors (78) to restrict detection to certain azimuthal angles.
Abstract:
A tool for investigating a substrate, where the tool has a tool head for investigating the substrate, a chuck for disposing an upper surface of the substrate in proximity to the tool head, and an air bearing disposed on the tool head adjacent the substrate. The air bearing has a pressure source and a vacuum source, where the vacuum source draws the substrate toward the air bearing and the pressure source prevents the substrate from physically contacting the air bearing. The pressure source and the vacuum source work in cooperation to dispose the upper surface of the substrate at a known distance from the tool head. By using the air bearing as part of the tool in this manner, registration of the substrate to the tool head is accomplished relative to the upper surface of the substrate, not the back side of the substrate.
Abstract:
A periodic structure (32) is illuminated by polychromatic electromagnetic radiation (20). Radiation from the structure is collected and divided into two rays having different polarization states. The two rays (46, 48) are detected from which one or more parameters of the periodic structure may be derived. In another embodiment, when the periodic structure is illuminated by a polychromatic electromagnetic radiation, the collected radiation from the structure is passed through a polarization element having a polarization plane. The element and the polychromatic beam are controlled so that the polarization plane of the element are at two or more different orientations with respect to the plane of incidence of the polychromatic beam.
Abstract:
Disclosed is a self-clearing objective (100) for directing a beam towards a sample and clearing away debris from an optical viewing path adjacent to the sample. The self-clearing objective includes an optical element (106, 210, 310, 408, 510) and a substantially transparent fluid (104, 213, 326, 512) flowing between the optical element and the sample such that at least a portion adjacent to the sample is substantially cleared of debris. The optical element and the fluid cooperatively direct the beam towards the sample. This self-clearing objective may be coupled with various measurement devices to measure various characteristics of samples having debris that prevents clear optical measurements. Additionally, the measurement device may be integrated with or coupled to various sample processing systems so that the relevant process may be clearly monitored.
Abstract:
Systems and methods for inspecting a wafer are provided. One system includes an illumination subsystem configured to illuminate the wafer; a collection subsystem configured to collect light scattered from the wafer and to preserve the polarization of the scattered light; an optical element configured to separate the scattered light collected in different segments of the collection numerical aperture of the collection subsystem, where the optical element is positioned at a Fourier plane or a conjugate of the Fourier plane of the collection subsystem; a polarizing element configured to separate the scattered light in one of the different segments into different portions of the scattered light based on polarization; and a detector configured to detect one of the different portions of the scattered light and to generate output responsive to the detected light, which is used to detect defects on the wafer.
Abstract:
An adjustable, composite polarizer can include first and second plate polarizers and an adjusting apparatus. The adjusting apparatus can adjust a pitch angle and a roll angle for the first and second plate polarizers while maintaining a predetermined, minimal distance between those plates. In this configuration, the adjustable, composite polarizer can provide mirror symmetric polarization with respect to an incident plane while providing the flexibility of any polarization.
Abstract:
To increase inspection throughput, the field of view of an infrared camera can be moved over the sample at a constant velocity. Throughout this moving, a modulation can be provided to the sample and infrared images can be captured using the infrared camera. Moving the field of view, providing the modulation, and capturing the infrared images can be synchronized. The infrared images can be filtered to generate the time delay lock-in thermography, thereby providing defect identification. This filtering can account for the number of pixels of the infrared camera in a scanning direction. For the case of optical modulation, a dark field region can be provided for the field of view throughout the moving, thereby providing an improved signal-to-noise ratio during filtering. Localized defects can be repaired by a laser integrated into the detection system or marked by ink for later repair in the production line.
Abstract:
A curved mirrored surface (78) is used to collect radiation scattered by a sample surface (76a) and originating from a normal illumination beam (70) and an oblique illumination beam (90). The collected radiation is focused to a detector (80). Scattered radiation originating from the normal and oblique illumination beams may be distinguished by employing radiation at two different wavelengths, by intentionally introducing an offset between the spots illuminated by the two beams or by switching the normal and oblique illumination beams (70, 90) on and off alternately. Beam position error caused by change in sample height may be corrected by detecting specular reflection of an oblique illumination beam and changing the direction of illumination in response thereto. Butterfly-shaped spatial filters may be used in conjunction with curved mirror radiation collectors (78) to restrict detection to certain azimuthal angles.