Abstract:
A laser projection system having built-in safety systems is disclosed. Further disclosed is a method of operating a laser projection system such that safe operation is a factor only of meeting a threshold distance between the laser unit and an audience member. To accomplish safe operation at the threshold distance, the laser projection system is pre-calibrated to operate below maximum permitted exposure levels at the threshold distance. In this manner of operation, laser lighting can be accomplished by non-laser professionals without the complexity, external sensors, and need for calibration at the venue.
Abstract:
A light monitoring system, a glare prevention system, a method of monitoring glare and a vehicle 102 are provided. The light monitoring system comprises a camera system 114, a user's eye tracker 110 and an incident light calculator 124. The camera system 114 records at a camera location incident light from a light source. The user's eye tracker 110 determines a position of the user's eyes104. The incident light calculator 124 calculates perceived incident light by the user's eyes 104 and transforms the recorded incident light at the camera location into the perceived incident light at the position of the user's eyes. The perceived incident light may be used to estimate whether the user 106 perceives glare and this information may be used to control a dynamic light intensity filter such that the light originating from a too bright light source is dimmed.
Abstract:
A method of patterning lithographic substrates, the method comprising using a free electron laser (FEL) to generate EUV radiation and delivering the EUV radiation to a lithographic apparatus (LA) which projects the EUV radiation onto lithographic substrates, wherein the method further comprises reducing fluctuations in the power of EUV radiation delivered to the lithographic substrates by using a feedback-based control loop (CT) to monitor the free electron laser and adjust operation of the free electron laser accordingly.
Abstract:
A light sensor is provided including a light transducer for accumulating charge in proportion to light incident thereon over an integration period; and a light-to-pulse circuit in communication with the light transducer, the light-to-pulse circuit operative to output a pulse having a pulse width based on the charge accumulated by the light transducer. The light-to-pulse circuit may include a one shot logic circuit that contributes to generation of the pulse. The light sensor may include an input/output pad, a capacitor provided at the input/output pad for blocking static electricity, an input low pass filter provided at the input/output pad for blocking electromagnetic interference, and/or a bandgap voltage reference circuit connected to a power source having a supply voltage level in a range of about 3.3V to about 5.0V, and for generating stable reference voltages throughout the supply voltage level range.
Abstract:
This disclosure provides systems, methods and apparatus for electromechanical systems variable capacitance devices. In one aspect, an electromechanical systems variable capacitance device includes a substrate with a bottom bias electrode on the substrate. A first radio frequency electrode above the bottom bias electrode defines a first air gap. A non-planarized first dielectric layer is between the bottom bias electrode and the first radio frequency electrode. A metal layer above the first radio frequency electrode defines a second air gap. The metal layer includes a top bias electrode and a second radio frequency electrode.
Abstract:
A test device to detect a detection object of a microfluidic device and a control method thereof are provided. The test device includes a light emitting element configured to emit light onto the microfluidic device, a light receiving element configured to capture an image of the detection object through light emitted from the light emitting element, and a controller configured to determine a signal value of a predetermined area of the image of the detection object, and adjust an exposure level of the light receiving element according to a difference between the signal value and a predetermined target value.
Abstract:
It is an object of the present invention to provide a method and a device for automatically calibrating a light intensity measurement device. The device (1) includes an optical switch (3) for switching a route of output from an optical intensity modulator (2), an optical attenuator (5) arranged on a first waveguide (4), a second waveguide (6), a light intensity measurement device (7), a control device (8) for receiving light intensity information measured by the light intensity measurement device (7) and controlling the signal to be applied to the optical intensity modulator (2), and a signal source (9) for receiving a control signal of the control device (8) and adjusting the signal to be applied to the optical intensity modulator (2).