Abstract:
A chip resistor having first and second opposite ends includes a rigid insulated substrate having a top surface and an opposite bottom surface, a first electrically conductive termination pad and a second electrically conductive termination pad, both termination pads on the top surface of the rigid insulated substrate, a layer of resistive material between the first and second electrically conductive termination pads, and a first and a second flexible lead, each made of an electrically conductive metal with a solder enhancing coating. The first flexible lead attached and electrically connected to the first electrically conductive termination pad and the second flexible lead attached and electrically connected to the second electrically conductive termination pad. Each of the flexible leads has a plurality of lead sections facilitating bending around the end of the chip resistor.
Abstract:
In a vibrator support structure, a vibrator is supported on a substrate through support pins, substrate connection portions of the support pins and pin connection portions of the substrate are joined through conductive adhesive which is made of a resin including conductive filler and has a pencil hardness of about 4H or less, and the conductive adhesive has a thickness which can buffer vibrations and impacts propagated through the support pins.
Abstract:
In an electronic control unit, a chassis is provided with a plate portion, and a circuit board is secured to a board-side attaching surface of the plate portion with a predetermined space secured relative to the plate portion. The chassis is further provided with a side wall protruding from the circumferential portion of the other surface of the plate portion and is mounted on a surface of a housing incorporating a device therein, with an end surface of the side wall being seated on the surface of the housing. A bus bar is fixed at a fixing portion thereof to the board-side attaching surface between the plate portion and the circuit board and is connected to a terminal of the device which is taken out from the housing. The bus bar is provided at plural free ends thereof with branch portions at which lead portions extend to be joined at end portions thereof to the circuit board. Elastic portions for reducing stresses which are developed at juncture portions of the lead portions to the circuit board as the temperature changes are formed between the base portion and the branch portions alongside the board-side attaching surface.
Abstract:
A connector has terminals, each having a tip end portion. A wiring board has through holes. A land is provided on the wiring board about each through hole. When the connector is mounted on the wiring board, each terminal is connected to one of the lands with a part of the tip end portion being located in the corresponding through hole. The ratio of the cross-sectional area of each tip end portion to the cross-sectional area of each through hole is at least 0.11 and no more than 0.89. This improves the reliability of the joint portions between the terminals and the wiring board.
Abstract:
An apparatus and method for shielding electrical components mounted on a printed circuit board (PCB) from electromagnetic and radio frequency interference by reducing the dissipation of heat away from solder joints. In an embodiment of the invention a radio frequency (RF) shield for a printed circuit board comprises a shield for RF shielding a portion of the PCB having electronic components mounted thereon. The shield has a first portion and a second portion, wherein the first portion has a reduced cross sectional area, for reducing heat conduction between the first and the second portion when the first portion of the shield is inserted into a first plurality of holes in the PCB, for soldering the first portion of the shield to a copper foil of the PCB.
Abstract:
A device and method for mounting a surface mount package onto a printed circuit board includes inserting a pin through a printed circuit board feedthrough for providing movement of the pin within the feedthrough. One end of the pin is soldered to conductive surfaces on the bottom side of the printed circuit board while the other end of the pin id soldered to a surface mount package pad. The package is mounted in a spaced relation with a printed circuit board top surface. The pin is soldered to the board conductive surface using a high temperature solder for forming a solder joint which remains solid during subsequent soldering using a low temperature solder such as a lead tin solder type. The pin is then soldered to the pad of the surface mount package using the low temperature lead tin solder for forming a solder joint between the pad and pin. The pin is sized for loosely fitting within the feedthrough and thus movement caused by a coefficient of thermal expansion mismatch between materials of the pad, pin, and printed circuit board is absorbed by movement of the pin within the feedthrough. As a result, stress relief is provided for the solder joints.
Abstract:
A method of soldering electrical lead strands (of a width at least 0.3 inch) to a printed electrical path is disclosed. The path is planted on an alumina ceramic substrate and a solder pad is attached to a portion of the path. A flat surface portion of each lead strand is forced into full interengagement with a pad, a CO.sub.2 defocused laser beam is directed onto the soldering assembly with the beam controlled to have a beam power of at least 100 watts, a beam spot diameter no less than the width of the lead strand and no greater than the width of the pad, and a beam on-time effective to exert a controlled thermal radius on the soldering assembly to reflow only a preselected portion of the pad and effect a solder joint between the pad and strand portion, the joint having a strength of at least 400 grams. The parameters of the beam power, beam spot diameter, and beam on-time are optimally correlated by the following equation: ##EQU1## where: C is the critical thermal radius, a is the Gaussian radius at 1/e.sup.2, ln is logarithm, Tm is the melting temperature of the solder minus the specimen temperature, P is the laser beam power in watts, A is the surface absorptivity of the solder at 10.6 microns, R is the terminal resistance per unit area of the system, tc is the critical time to bring the solder to the Tm temperature, c is the heat capacity of the system.
Abstract:
PROBLEM TO BE SOLVED: To provide a board terminal with a new structure, which is formed of a metal wire rod and can be inserted into a through-hole of a small diameter and can demonstrate sufficient solder wettability without requiring post-plating. SOLUTION: A cutting wire rod 12 in which a square metal wire rod of a rectangular cross-section, on the whole surface of which a plating layer 20 is formed, is cut into a prescribed length is used, and in an insertion portion 16 which is inserted into and soldered to the through-hole 32 of a printed circuit board 30, only one of the edge portions in a width direction which face each other in a long side direction is cut to reduce the dimension in a long side direction. Thus, the plating layer 20 of the square metal wire rod is left in three side faces 18a, 18b, 18c of the insertion portion 16. COPYRIGHT: (C)2011,JPO&INPIT
Abstract:
PURPOSE: To align a semiconductor device, having an external connection terminal which is formed by a wire to a mounting substrate for sure and easy mounting. CONSTITUTION: A manufacturing method is used to manufacture a semiconductor device, where a wire 14 with conductivity is connected electrically to an electrode terminal 12 formed on the electrode terminal formation surface of a semiconductor element 10 for erecting, and a solder bump 38 is formed at the tip part of the wire 14. In the manufacturing method, on the surface of a substrate 30, consisting of a base material having interior wetting property to solder as compared with the wire 14, a solder paste 32 is arranged in dots corresponding to the position of the tip part of the wire 14, the each solder paste 32 and the tip part of the wire 14 are aligned for heating, and the solder bump 38 is formed at the tip part of the wire 14.