고분자 화합물 필러 구조체를 이용한 3차원 전극 및 그 제조방법
    41.
    发明公开
    고분자 화합물 필러 구조체를 이용한 3차원 전극 및 그 제조방법 有权
    使用聚氨酯丙烯酸酯支架的三维电极及其制造方法

    公开(公告)号:KR1020130015128A

    公开(公告)日:2013-02-13

    申请号:KR1020110076965

    申请日:2011-08-02

    Abstract: PURPOSE: A 3D electrode using a polymer pillar structure and a manufacturing method thereof are provided to simplify a pattern manufacturing process by using a master mold for manufacturing a single pattern or multilevel pattern. CONSTITUTION: A rear support film(203) is attached to the upper side of a polymer compound resin. The polymer compound resin is cured. A polymer compound pillar structure(202a) with a pattern is obtained by separating the cured polymer compound resin from the master mold. A conductive polymer(205) is deposited on the surface of the polymer compound pillar structure. A 3D electrode of the polymer compound pillar structure is formed.

    Abstract translation: 目的:提供使用聚合物柱结构的3D电极及其制造方法,以通过使用用于制造单一图案或多层图案的母模来简化图案制造工艺。 构成:后支撑膜(203)附着在高分子化合物树脂的上侧。 高分子化合物树脂固化。 通过将固化的聚合物复合树脂与母模分离,得到具有图案的聚合物复合柱结构(202a)。 导电聚合物(205)沉积在聚合物复合柱结构的表面上。 形成高分子化合物柱结构的3D电极。

    게르마늄화 코발트 단사정계 단결정 나노와이어 및 그 제조방법
    42.
    发明授权
    게르마늄화 코발트 단사정계 단결정 나노와이어 및 그 제조방법 失效
    单晶单晶钴德国纳米线及其制造方法

    公开(公告)号:KR101200870B1

    公开(公告)日:2012-11-13

    申请号:KR1020100039908

    申请日:2010-04-29

    Inventor: 김봉수 윤하나

    Abstract: 본 발명은 게르마늄화 코발트 나노와이어 및 그 제조방법에 관한 것으로, 본 발명에 따른 게르마늄화 코발트 나노와이어는 기판 위에 독립적으로 서있는 (freestanding) 형태로 일정한 방향성을 가지며, 단사정계 구조의 게르마늄화 코발트 나노와이어이며, 상온 이상의 큐리 온도를 가지며, 300K에서 강자성 특성을 갖는 게르마늄화 코발트 나노와이어인 특징이 있고, 강한 자기 이방성을 가지며, 나노와이어의 장축 방향이 자화 용이축(magnetic easy axis)인 특징을 가져, 초고속, 대용량, 저전력, 저비용의 차세대 3차원 메모리 소자(memory device)의 개발에 응용할 수 있을 것으로 기대된다.

    규화금속 단결정 나노와이어의 제조방법 및 방향성을 갖는 규화금속 단결정 나노와이어
    43.
    发明授权
    규화금속 단결정 나노와이어의 제조방법 및 방향성을 갖는 규화금속 단결정 나노와이어 失效
    金属硅化物单晶纳米线和定向金属硅化物单晶纳米线的制备方法

    公开(公告)号:KR101200864B1

    公开(公告)日:2012-11-13

    申请号:KR1020100038386

    申请日:2010-04-26

    Abstract: 본 발명은 무-촉매, 무-템플레이트(template-free) 조건으로, 단축 직경의 길이가 엄밀하게 조절되며 기판에 대해 일정한 방향성을 가지며, 기판 상 독립적으로 서 있는(free-standing) 규화철 나노와이어의 제조방법 및 이를 이용하여 제조된 규화철 나노와이어에 관한 것으로, 상세하게, 본 발명에 따른 제조방법은 반응로의 전단부에 위치한 할로겐화철을 함유하는 제1선구물질, 상기 반응로의 후단부에 위치한 규소(Si) 및 탄소(C)를 함유하는 제2선구물질, 상기 반응로의 후단부에 위치한 기판을 불활성 기체가 흐르는 분위기에서 열처리하여 상기 기판 상에 규화철 나노와이어가 제조되며, 상기 제2선구물질의 규소:탄소의 질량비에 의해 상기 기판상 형성되는 상기 규화철 나노와이어의 단축 방향과 장축 방향의 상대적 성장 속도가 제어되는 특징이 있다.

    게르마늄화 코발트 단사정계 단결정 나노와이어 및 그 제조방법
    44.
    发明公开
    게르마늄화 코발트 단사정계 단결정 나노와이어 및 그 제조방법 失效
    单组分单晶钴钴化合物纳米线及其制备方法

    公开(公告)号:KR1020110120479A

    公开(公告)日:2011-11-04

    申请号:KR1020100039908

    申请日:2010-04-29

    Inventor: 김봉수 윤하나

    Abstract: PURPOSE: Cobalt germanide monoclinic single crystal nano-wires and a method for manufacturing the same are provided to massively manufacture the nano-wires for a short period of time under a non-catalytic condition and a non-template condition. CONSTITUTION: Cobalt germanide monoclinic single crystal nano-wires are ferromagnetic substances at the absolute temperature of 300K. The nano-wires include a magnetic anisotropic characteristic. The longitudinal axis of the nano-wires is a magnetic easy axis. If an external magnetic field is applied to the longitudinal axis direction of the nano-wires at the 300K, the nano-wires are saturated at the 8000Oe or more of the magnetic field. If an external magnetic field is applied to the longitudinal axis direction of the nano-wires at the 300K, the nano-wires include 10-40Oe of coercivity. If an external magnetic field is applied to the short axis direction of the nano-wires at the 300K, the nano-wires include 90-120Oe of coercivity. The nano-wires independently stand on a substrate.

    Abstract translation: 目的:提供锗锗单斜晶单晶纳米线及其制造方法,用于在非催化条件和非模板条件下短时间内大量制造纳米线。 规定:锗锗单斜晶纳米线是绝对温度为300K的铁磁性物质。 纳米线包括磁各向异性特征。 纳米线的纵向轴线是易磁化轴。 如果在300K处对纳米线的纵轴方向施加外部磁场,那么纳米线在8000Oe以上的磁场饱和。 如果在300K处将外部磁场施加到纳米线的纵轴方向,则纳米线包括10-40O的矫顽力。 如果在300K处对纳米线的短轴方向施加外部磁场,则纳米线的矫顽力为90〜120Oe。 纳米线独立地置于基底上。

    단결정 게르마늄화철 나노와이어 및 그 제조방법
    45.
    发明公开
    단결정 게르마늄화철 나노와이어 및 그 제조방법 失效
    单晶钢铁锗纳米线及其制造方法

    公开(公告)号:KR1020110075865A

    公开(公告)日:2011-07-06

    申请号:KR1020090132434

    申请日:2009-12-29

    Inventor: 김봉수 윤하나

    Abstract: PURPOSE: Mono crystalline iron germanide-based nano-wire and a method for manufacturing the same are provided to improve purity and prevent the generation of crystalline defects using a vapor-phase transporting process without a catalyst. CONSTITUTION: Mono crystalline iron germanide-based nano-wire is manufactured on a substrate by thermally vaporizing precursors containing germanium and iron halide. The nano-wire is formed into a hexagonal structure, and the aspect ratio of the nano-wire is between 20 and 300. A method for manufacturing the nano-wire includes the following: A first precursor and a second precursor are prepared and are thermally processed under inert gas atmosphere. The first precursor is arranged at the front side of a reaction furnace and contains iron halide. The second precursor is arranged at the rear side of the reaction furnace and contains germanium and carbon.

    Abstract translation: 目的:提供单晶锗化锗基纳米线及其制造方法,以提高纯度并防止在没有催化剂的情况下使用气相输送过程产生结晶缺陷。 构成:通过将含有锗和卤化铁的前体进行热蒸发,在基底上制造单晶锗化锗基纳米线。 纳米线形成六边形结构,纳米线的纵横比在20和300之间。纳米线的制造方法包括:制备第一前体和第二前体,并且是热的 在惰性气体环境下进行处理。 第一前驱体设置在反应炉的前侧,并含有卤化铁。 第二前驱体设置在反应炉的后侧,并含有锗和碳。

    비스무트 단결정 나노와이어의 제조방법
    47.
    发明公开
    비스무트 단결정 나노와이어의 제조방법 有权
    双晶单晶纳米复合材料的制备方法

    公开(公告)号:KR1020090081488A

    公开(公告)日:2009-07-29

    申请号:KR1020080007372

    申请日:2008-01-24

    Inventor: 김봉수 인준호

    Abstract: A method for preparing single crystalline bismuth nanowire is provided to prepare a semi-metal material of single crystalline bismuth nanowire by a vapor-phase transport process without the use of nanoporous template. A method for preparing single crystalline bismuth nanowire comprises the following steps of: vaporizing bismuth powder; and forming bismuth nanowire on a substrate. The bismuth powder is located on the front end of a reactor and maintained at the temperature of 600 - 800°C. The substrate is located on the back end of the reactor and maintained at the temperature of 100 - 200°C. An inert gas flow rate is 100 - 600 sccm when it flows from the front end to the back end of the reactor.

    Abstract translation: 提供制备单晶铋纳米线的方法,通过气相输送方法制备单晶铋纳米线的半金属材料,而不使用纳米多孔模板。 制备单晶铋纳米线的方法包括以下步骤:蒸发铋粉; 并在基底上形成铋纳米线。 铋粉末位于反应器的前端,并保持在600-800℃的温度。 基材位于反应器的后端,并保持在100-200℃的温度。 惰性气体流量从反应器的前端流向后端时为100-600sccm。

    ITO 기판을 이용한 산화아연 나노선의 수직성장 방법
    48.
    发明授权
    ITO 기판을 이용한 산화아연 나노선의 수직성장 방법 失效
    ITO基板上的硝基纳米管的垂直生长方法

    公开(公告)号:KR100836890B1

    公开(公告)日:2008-06-11

    申请号:KR1020070033611

    申请日:2007-04-05

    CPC classification number: C01G9/02 B82Y30/00 B82Y40/00 C01P2004/16 H01J1/304

    Abstract: A method for manufacturing zinc oxide nanowires is provided to produce single crystal zinc oxide nanowires having uniform size, shape, and density vertically grown on an ITO substrate using a chemical vapor deposition method. A method for manufacturing zinc oxide nanowires on an ITO substrate includes the steps of: physically covering the ITO substrate with a metal foil having a macro hole; mixing ZnO and Zn powders; and manufacturing the zinc oxide nanowires by heat-treating the ITO glass covered with the metal foil and a crucial containing the ZnO/Zn mixture powder in an atmosphere of inert gas and oxygen gas. The ZnO and Zn powders are mixed in a weight ratio of ZnO : Zn ranging from 1:0.2 to 1:5.

    Abstract translation: 提供了一种用于制造氧化锌纳米线的方法,以使用化学气相沉积法在ITO基板上垂直生长具有均匀尺寸,形状和密度的单晶氧化锌纳米线。 在ITO基板上制造氧化锌纳米线的方法包括以下步骤:用具有宏观孔的金属箔物理覆盖ITO基板; 混合ZnO和Zn粉末; 并且通过对被金属箔覆盖的ITO玻璃进行热处理并且在惰性气体和氧气气氛中含有ZnO / Zn混合物粉末的关键性来制造氧化锌纳米线。 将ZnO和Zn粉末以1:0.2至1:5的ZnO:Zz的重量比混合。

    표면증강 라만 산란을 이용한 진단 플랫폼 및 이를 이용한 진단 방법
    49.
    发明公开
    표면증강 라만 산란을 이용한 진단 플랫폼 및 이를 이용한 진단 방법 有权
    使用表面增强拉曼散射的诊断平台和诊断方法

    公开(公告)号:KR1020160021488A

    公开(公告)日:2016-02-26

    申请号:KR1020140106760

    申请日:2014-08-18

    Inventor: 김봉수 이효반

    Abstract: 생화학물질진단플랫폼은금속나노플레이트, 금속나노플레이트의표면상에부착된바이오리셉터, 바이오리셉터에의해포획된바이오마커, 바이오마커를캡핑하는금속나노입자, 및포획된바이오마커를분석하기위한분광검출부를포함한다. 바이오마커를샌드위치시켜고정함으로써고민감도로생화학물질을검출할수 있다.

    Abstract translation: 生化材料诊断平台包括:金属纳米板; 附着在金属纳米板表面上的生物受体; 由生物受体捕获的生物标志物; 用于封盖生物标志物的金属纳米颗粒; 以及用于分析所捕获的生物标志物的光谱检测单元。 该平台能够通过夹持和固定生物标志物来检测高灵敏度的生化材料。

Patent Agency Ranking