Abstract:
In an accelerating tube which uses a conductive insulator, there is a possibility that the dopant concentration on a surface of the conductive insulator becomes non-uniform so that the surface resistance of the conductive insulator becomes non-uniform. Accordingly, a circumferential groove is formed on the inner surface of the conductive insulator accelerating tube in plural stages, and metal is metalized along inner portions of the grooves. When the resistance of a specific portion on the surface of the accelerating tube differs from the resistance of an area around the specific portion, the potential of the metalized region on the inner surface of the accelerating tube becomes a fixed value and hence, the potential distribution on the inner surface of the accelerating tube in the vertical direction can be maintained substantially equal without regard to the circumferential direction.
Abstract:
A system and method of magnetically insulating the cathode of a cold-cathode electron gun is achieved. A strong magnetic field is applied in the vicinity of the cold cathode to deflect and constrain the flow of electrons emitted from structures within the electron gun. The magnetic field largely prevents re-reflected primary and secondary electrons from reaching the cathode, thereby improving the operation and increasing the life of the cold-cathode electron gun. In addition, the insulating magnetic field improves electron beam focusing and enables a reduction in the magnitude of static electric focusing fields employed in the vicinity of the cold cathode, further reducing the electron gun's susceptibility to destructive arcing.
Abstract:
This invention provides a dielectric composition comprising a dielectric which is fireable in air at a temperature in the range of about 450° C. to about 550° C. and a conductive oxide selected from the group consisting of antimony-doped tin oxide, tin-doped indium oxide, a transition metal oxide which has mixed valence states or will form mixed valence states after firing in a nitrogen atmosphere at a temperature in the range of about 450° C. to about 550° C. and normally conducting precious metal oxides such as ruthenium dioxide, wherein the amount of conductive oxide present is from about 0.25 wt % to about 25 wt % of the total weight of dielectric and conductive oxide. This dielectric composition has reduced electrical resistance and is useful in electron field emission devices to eliminate charging of the dielectric in the vicinity of the electron emitter and the effect of static charge induced field emission.
Abstract:
A positron producing apparatus which includes a vacuum chamber with a source of positrons to be supplied into the vacuum chamber forming a positron cloud within a Penning Trap. The positron cloud is to be compressed producing a thin positron beam which is extracted from the cloud and is smaller in cross-sectional area than the cloud. The positron beam is to be transmitted to a focusing apparatus which transmits the positron beam onto a solid target. The vacuum chamber is to include a cooling gas to be supplied into the vacuum chamber and a compressing device for the positron cloud is to include a rotating electric field. A method for compressing the positron cloud to produce a thin positron beam, which is to be transmitted to a solid for the purpose of analyzing properties of the solid, comprises the steps of supplying a source of positrons within a vacuum environment, forming and containing the positron cloud within a Penning Trap, producing a positron beam, and focusing of that positron beam onto a solid. The method is also to include adding of a cooling gas within the vacuum environment.
Abstract:
An electron beam generator includes: an electron emitting cathode (1); an anode (3) with an anode bore (4) for the passage of an electron beam (6); a Wehnelt electrode (2) between the cathode (1) and the anode (3) for controlling the electron beam; the cathode (1); the anode (3) and the Wehnelt electrode (2) disposed within a vacuum chamber (100); and a magnetic unit (7) disposed between the cathode (1) and the anode (3) for generating a static transverse magnetic field causing the electrons to be deflected along a curved path until the electrons enter the anode (3) such that ions follow an ionic path back to strike the Wehnelt electrode (2) and are kept from striking the cathode (1) by displacement caused by the ionic path. The present invention reduces the number of ions that impact the cathode and reduces the number of ions that are formed by the ionization of residual molecules, increasing the service life of the cathode.
Abstract:
A metal sheet is provided with a plurality of slots which are disposed in parallel rows and columns. Charge sensing pads are disposed on an insulating layer on one surface of the metal sheet with a separate pair of the charge sensing pads being in abutting relation and sandwiching a separate slot. The sensing pads include a portion which extends beyond the length of the slot and is of a material having a high secondary emission ratio. The sensing pads have a capacitance to the metal layer such that they can be electrically charged to a common voltage level which permits a substantially uniform maximum electrical charge to pass into each one of the slots when the abutting sensing pads are discharged by line electron sources. The charge sensing pads may be repetitively charged, i.e., brought back to the common level, through secondary emission from the portions of the pads which extend beyond the slots. A plurality of substantially parallel modulating electrodes are disposed on, but insulated from, the other surface of the metal sheet. Each one of the modulating electrodes extends around one of the parallel columns of slots. The modulating electrodes control the charge which exits from each one of the slots during a charge-discharge cycle. The modulating mask is suitable for use with line electron sources to form a display having desirable characteristics. The modulation mask can be used in conjunction with feedback multiplier line sources as long as high energy electrons are eliminated through the use of high energy electron filters.
Abstract:
본 발명의 실시예는 기판의 상측 또는 하측에 제1 RF 전극레일, 제2 RF 전극레일, 하나 이상의 제1 DC 전극 및 하나 이상의 제2 DC 전극을 포함하는 이온 트랩 장치에 있어서, 상기 기판은 상기 이온 트랩 장치의 폭 방향을 기준으로 일측과 타측이 일정거리 이격되어 분리된 공간에 이온 트랩 영역을 형성하고, 상기 제1 RF 전극레일 및 상기 제2 RF 전극레일은 상기 이온 트랩 장치의 길이 방향으로 나란하게 배치되고, 상기 일측 상부에 상기 제1 RF 전극레일이 위치하고, 상기 일측 하부에 상기 하나 이상의 제2 DC 전극이 위치하고, 상기 타측 상부에 상기 하나 이상의 제1 DC 전극이 위치하고, 상기 타측 하부에 상기 제2 RF 전극레일이 위치하고, 상기 기판의 일측 또는 타측의 외측면에서 상기 트랩 영역으로 연결된 레이저 관통로를 구비하는 이온 트랩 장치 및 그 제작 방법을 제공한다.
Abstract:
A system and method of magnetically insulating the cathode of a cold-cathode electron gun is achieved. A strong magnetic field is applied in the vicinity of the cold cathode to deflect and constrain the flow of electrons emitted from structures within the electron gun. The magnetic field largely prevents re-reflected primary and secondary electrons from reaching the cathode, thereby improving the operation and increasing the life of the cold-cathode electron gun. In addition, the insulating magnetic field improves electron beam focusing and enables a reduction in the magnitude of static electric focusing fields employed in the vicinity of the cold cathode, further reducing the electron gun's susceptibility to destructive arcing.
Abstract:
A system (10) for inhibiting the transport of contaminant particles (60) with an ion beam (44) includes a pair of electrodes (14, 16) that provide opposite electric fields (26, 28, 30, 32) through which the ion beam (44) travels. A particle (60) entrained in the ion beam (44) is charged to a polarity matching the polarity of ion beam (44) when traveling through a first of the electric fields (26, 28). The downstream electrode (16) provides another electric field (30, 32) for repelling the positively charged particle (60) away from the direction of beam travel.
Abstract:
A charged particle trap for trapping of a plurality of charged particles, and a method of operating said trap. The trap includes first and second electrode mirrors (2,3) having a common optical axis (4), the mirrors being arranged in alignment at two extremities thereof. The mirrors are capable, when voltage is applied thereto, of creating respective electric fields defined by key field parameters. The electric fields are configured to reflect charged particles causing their oscillation between the mirrors. The method includes introducing into the trap, along the optical axis, the plurality of charged particles as a beam (10) having pre-determined key beam parameters. The method further includes choosing the key field parameters for at least one of the mirrors such as to induce bunching among charged particles in the beam.