Abstract:
The invention provides a charged particle beam device (1) to inspect or structure a specimen (3) comprising a charged particle beam source (5) to generate a charged particle beam (7), a beam optical system (16) to direct the charged particle beam (7) onto said specimen (3) and a gas supply system (10) providing a gas (12) for the charged particle beam device (1), whereby the gas supply system (10) comprises a plurality of at least ten tubes (14; 15; 22) to direct said gas (12) to a desired region (68) for interaction with the specimen (3). The gas support system enables the charged particle beam device to provide sufficient gas for decharging the specimen with a total gas flow which is significantly lower than the total gas flow of charged particle beam devices using previously known gas supply systems. A lower total gas flow helps to improve the vacuum in the charged particle beam region.
Abstract:
The invention provides a focussing electron beam device comprising a single or an array of field emitter beam sources to generate electron beams with field emitter beam sources, at least one anode capable of accelerating the electrons of the electron beams towards a specimen, focussing components capable of focussing the electron beams onto the specimen and a control circuit that: a) senses for deviations of the actual current values of the electron beams from desired current values; b) controls first voltages V1 to adjust the actual current values of the electron beams to the desired current values; and c) controls second voltages V2 to adjust the actual focus positions of the electron beams to the desired focus positions. The voltage control circuit adjusts the actual current values of the electron beams to the desired current values and makes it possible to adjust the current values of an array of electron beams to a single value. Furthermore, a focussing electron beam device is disclosed with an array of field emitter beam sources integrated onto a substrate, which makes it possible to have arrays of field emitter beam sources with thousands or even millions of field emitter beam sources. With the integration of the control circuits for each field emitter beam source it is possible to adjust the current values and focus positions of each electron beam individually. Furthermore, methods are disclosed describing the operation of a single field emitter beam source or an array of field emitter beam sources.
Abstract:
A charged particle beam device 10 for imaging and/or inspecting a sample 140 is described. The charged particle beam device includes a beam emitter 150 for emitting a primary charged particle beam 105; a retarding field device 100 for retarding the primary beam before impinging on the sample, the retarding field device including an objective lens 110 and a proxy electrode 130; and a first detector 120 for off-axial backscattered particles between the proxy electrode and the objective lens. The charged particle beam device is adapted for guiding the primary beam along an optical axis 101 to the sample for releasing signal particles. The proxy electrode includes one opening 131 allowing a passage of the primary charged particle beam and of the signal particles, wherein the one opening is sized to allow a passage of charged particles backscattered from the sample at angles from 0° to 20° or above relative to the optical axis. Further, a method for imaging and/or inspecting a sample with a charged particle beam device is described.
Abstract:
A method of operating a charged particle gun (102) is described. The method includes providing an emitter (122) at a first emitter potential within the charged particle gun and providing a trapping electrode (142) at a first electrode potential within the charged particle gun, wherein the first emitter potential and the first electrode potential is provided to have an electrical field of essentially zero at the emitter and at the trapping electrode; switching the trapping electrode from the first electrode potential to a second electrode potential different from the first electrode potential to generate an electrostatic trapping field at the trapping electrode; and after switching the trapping electrode from the first electrode potential to the second electrode potential, switching on an electrostatic emission field at the emitter.
Abstract:
A beam splitter for generating a plurality of charged particle beamlets from a charged particle source is disclosed. The beam splitter includes a plurality of beamlet deflectors, which each pass a beamlet along an optical axis. Each beamlet deflector includes a low order element and a corresponding high order element. Each low order element has fewer electrodes than each corresponding high order element; and each low order element is one of a plurality of low order elements; and each corresponding high order element is one of a plurality of high order elements.
Abstract:
A charged particle beam device is described. The charged particle beam device includes a charged particle beam source (12) for emitting a charged particle beam, and a switchable multi-aperture (26) for generating two or more beam bundles (21a, 21b) from the charged particle beam, wherein the switchable multi-aperture includes: two or more aperture openings, wherein each of the two or more aperture openings is provided for generating a corresponding beam bundle of the two or more beam bundles; a beam blanker arrangement (226) configured for individually blanking the two or more beam bundles; and a stopping aperture (227) for blocking beam bundles, which are blanked off by the beam blanker arrangement. The device further includes a control unit electrically connected to the beam blanker arrangement and configured to control the individual blanking of the two or more beam bundles for switching of the switchable multi-aperture and an objective lens (18) configured for focusing the two or more beam bundles on a specimen (19) or wafer, wherein the two or more beam bundles are tilted with respect to the specimen or wafer depending on the position of each of the two or more beam bundles relative to an optical axis defined by the objective lens, and wherein the objective lens is configured for focusing the charged particle beam source, a virtual source provided by the charged particle beam source or a crossover.
Abstract:
The present invention relates to a focussing lens (100) for focussing a charged particle beam (7) onto a specimen (3) at a predetermined landing angle (42; 42'; 42) comprising at least one first electrode (26, 105, 105a) having a first aperture (106) to generate a focussing electric field (110) for focussing the charged particle beam (7) onto the specimen (3); and a correcting electrode having a curved surface (115) to compensate for landing angle dependent distortions of the focussing electric field (110) caused by the specimen (3). With the curved surface (115) of the correcting electrode it is possible to improve the focussing of a charged particle beam at landing angles that differ from the perpendicular landing angle.
Abstract:
An apparatus for producing a beam of charged particles is provided, which comprises an emitter (1, 2) and a switching device (3) adapted to switch between first, second and third beam current levels, wherein the beam current at said first current level is suitable for writing a pixel of an image on the surface of a sample, the beam current at said second current level is suitable for not writing a pixel on the surface of said sample, and the beam current at said third current level is lower than the beam current at the second current level. Furthermore, a method of controlling the beam current of a charged particle beam is provided, comprising the steps of switching the beam current of said charged particle beam between first and second current levels, wherein the beam current at said first current level is suitable for writing a pixel of an image on the surface of a sample and the beam current at said second current level is suitable for not writing a pixel on the surface of said sample, and switching the beam current to a third voltage level, wherein the beam current at said third current level is lower than the beam current at the second current level.
Abstract:
The invention provides a charged particle beam device (1) to inspect or structure a specimen (3) comprising a charged particle beam source (5) to generate a charged particle beam (7), a beam optical system (16) to direct the charged particle beam (7) onto said specimen (3) and a gas supply system (10) providing a gas (12) for the charged particle beam device (1), whereby the gas supply system (10) comprises a plurality of at least ten tubes (14; 15; 22) to direct said gas (12) to a desired region (68) for interaction with the specimen (3). The gas support system enables the charged particle beam device to provide sufficient gas for decharging the specimen with a total gas flow which is significantly lower than the total gas flow of charged particle beam devices using previously known gas supply systems. A lower total gas flow helps to improve the vacuum in the charged particle beam region.
Abstract:
The invention provides an electron beam device 1 comprising at least one field emission cathode 3 and at least one extracting electrode 5, whereby the field emission cathode 5 comprises a p-type semiconductor region 7 connected to an emitter tip 9 made of a semiconductor material, an n-type semiconductor region 11 forming a pn-diode junction 13 with the p-type semiconductor region 7, a first electric contact 15 on the p-type semiconductor region 7 and a second electric contact 17 on the n-type semiconductor region 11. The p-type semiconductor region 7 prevents the flux of free electrons to the emitter unless electrons are injected into the p-type semiconductor region 7 by the pn-diode junction 13. This way, the field emission cathode 3 can generate an electron beam where the electron beam current is controlled by the forward biasing second voltage V2 across the pn-diode junction. Such electron beam current has an improved current value stability. In addition the electron beam current does not have to be stabilized anymore by adjusting the voltage between emitter tip 9 and extracting electrode 5 which would interfere with the electric field of electron beam optics. The present invention further provides the field emission cathode as described above and an array of field emission cathodes. The invention further provides a method to generate at least one electron beam.