Abstract:
A stylus profilometer having a counterbalanced stylus with a motion transducer using a vane (41) moving between parallel, spaced-apart, conductive plates (35 and 37) which damp the motion of the vane by means of trapped air. The vane forms an electrode with the plates so that the combination is a pair of capacitors in a balanced bridge arrangement. Motion of the stylus causes an unbalance of the bridge indicative of the extent of stylus motion. A lever arm (59) associated with the stylus has a tip (57) influenced by a magnetic field which biases the stylus or controls force on a surface to be measured. The entire assembly has a very low moment of inertia to reduce the effects of vibration on the stylus and thereby increase resolution of the device and reduce damage to the substrate.
Abstract:
In an optical scanning system (200) for detecting particles and pattern defects on a sample surface (240), a light beam (238) is focused to an illuminated spot on the surface and the spot is scanned across a scan line. A detector (11b) is positioned adjacent to the surface to collect scattered light from the spot where the detector includes a one- or two-dimensional array of sensors. Light scattered from the illuminated spot at each of a plurality of positions along the scan line is focused onto a corresponding sensor in the array. A plurality of detectors symmetrically placed with respect to the illuminating beam detect laterally and forward scattered light from the spot.
Abstract:
A high throughput surface inspection system with enhanced detection sensitivity is described. The acquired data is processed in real time at a high rate of below 50 MHZ thereby reducing the cost for data processing. Anomalies are detected and verified by comparing adjacent repeating patterns and the height of the surface (40) is monitored and corrected dynamically to reduce misregistration errors between adjacent repeating patterns. Local thresholds employing neighborhood information are used for detecting and verifying the presence of anomalies. The sampled point spread function of the combined illumination (22) and collection system (90, 92, 111b) is exploited for anomaly detection and verification.
Abstract:
An apparatus for both deflecting a beam of light illuminating a spot on a surface and varying the size of the spot, electronically, without changing any system components. The apparatus includes an acousto-optic deflector (10) driven with a linear FM signal produced by a chirp signal generator (16). The linear FM signal is characterized with a dispersion rate, and the chirp signal generator includes a chirp dispersion selector to vary the dispension rate. A beam of collimated light (13) passes through the acousto-optic deflector (10) and appropriate focusing optics (14, 15) image the beam onto a spot in a nominal focal plane (17). The chirp dispension selector (17) sets the dispension rate in accord to a nominal rate, resulting in the beam illuminating a spot (18) in the focal plane (17). Generally, the focal plane coincides with a wafer surface (24), of the type having periodic (27b) and non-periodic (27c) features on it.
Abstract:
A high throughput surface inspection system with enhanced detection sensitivity is described. The acquired data is processed in real time at a high rate of below 50 MHZ thereby reducing the cost for data processing. Anomalies are detected and verified by comparing adjacent repeating patterns and the height of the surface (40) is monitored and corrected dynamically to reduce misregistration errors between adjacent repeating patterns. Local thresholds employing neighborhood information are used for detecting and verifying the presence of anomalies. The sampled point spread function of the combined illumination (22) and collection system (90, 92, 111b) is exploited for anomaly detection and verification.
Abstract:
An apparatus and method for inspecting a substrate (14), such as a semiconductor wafer, includes crossed cylindrical optical elements (44) that form an elliptical beam (40) that is caused to scan in parallel fashion at an oblique angle to the substrate (14). Preferably, the smaller dimension of the elliptical beam (40) is perpendicular to the direction of the scan of the beam across the wafer. A reflector (38) converts an angularly varying beam to a telecentrically scanning beam and also provides focusing only in the direction parallel to the telecentric scan.
Abstract:
A high sensitivity and high throughput surface inspection system directs a focused beam of light (38) at a grazing angle towards the surface to be inspected (40). Relative motion is caused between the beam (38) and the surface (40) so that the beam (38) scans a scan path covering substantially the entire surface and light scattered along the path is collected for detecting anomalies. The scan path comprises a plurality of arrays of straight scan path segments. The focused beam of light (38) illuminates an area of the surface between 5-15 microns in width and this system is capable of inspecting in excess of about 40 wafers per hour for 150 millimeter diameter wafers (6-inch wafers), in excess of about 20 wafers per hour for 200 millimeter diameter wafers (8-inch wafers) and in excess of about 10 wafers per hour for 300 millimeter diameter wafers (12-inch wafers).
Abstract:
A dual stage scanning instrument includes a sensor 60 for sensing a parameter of a sample 90 and coarse and fine stage 70,80 for causing relative motion between the sensor 60 and the sample 90. The coarse stage 80 has a resolution of about 1 micrometer and the fine stage 70 has a resolution of 1 nanometer or better. The sensor 60 is used to sense the parameter when both stages cause relative motion between the sensor assembly 60 and the sample 80. The sensor 60 may be used to sense height variations of the sample surface as well as thermal variations, electrostatic, magnetic, light reflectivity or light transmission parameters at the same time when height variation is sensed. By performing a long scan at a coarser resolution and short scans at high resolution using the same probe tips at fixed relative positions, data obtained from the long and short scans can be correlated accurately.