Abstract:
The invention relates to a Method of protecting a direct electron detector (151) in a TEM. The invention involves predicting the current density on the detector before setting new beam parameters, such as changes to the excitation of condenser lenses (104), projector lenses (106) and/or beam energy. The prediction is made using an optical model or a Look-Up-Table. When the predicted exposure of the detector is less than a predetermined value, the desired changes are made, otherwise a warning message is generated and changes to the settings are postponed.
Abstract:
The invention relates to a Method of protecting a direct electron detector (151) in a TEM. The invention involves predicting the current density on the detector before setting new beam parameters, such as changes to the excitation of condenser lenses (104), projector lenses (106) and/or beam energy. The prediction is made using an optical model or a Look-Up-Table. When the predicted exposure of the detector is less than a predetermined value, the desired changes are made, otherwise a warning message is generated and changes to the settings are postponed.
Abstract:
A method of processing a substrate in an apparatus including a substrate holder which holds the substrate, an ion source which emits an ion beam, a neutralizer which emits electrons, and a shutter which is arranged between a space in which the ion source and the neutralizer are arranged and a space in which the substrate holder is arranged, and configured to shield the ion beam traveling toward the substrate, includes adjusting an amount of electrons which are emitted by the neutralizer and reach the substrate holder during movement of the shutter.
Abstract:
The drawing apparatus of the present inventions includes a detector having a size for which the detector can simultaneously detect two adjacent charged particle beams among a plurality of charged particle beams, and configured to detect an intensity of a charged particle beam incident thereon. A controller is configured to perform a control of a position of the detector and a control of a blanking deflector array such that one of two adjacent charged particle beams is in a blanking state and the other is in a non-blanking state on the detector that is moved, and each of the plurality of charged particle beams becomes in a blanking state and a non-blanking state sequentially, to cause the detector to perform an output in parallel with the control, and to inspect a defect in each blanking deflector in the blanking deflector array based on the output.
Abstract:
A blanking deflector 23 is of the coaxial type and includes a rod-like inner electrode 231 and a cylindrical outer electrode 232 enclosing the inner electrode 231 such that an air gap through which the charged particle beam B passes is formed between the inner and outer electrodes 231 and 232. The inner electrode 231 and the outer electrode 232 are formed by forming electrode films 231b and 232b of a metal over the surfaces of nonconducting base materials 231a and 232a, respectively, by vacuum deposition or sputtering. Further, each of the shaping deflector and the main deflector and sub-deflector for beam scanning includes a plurality of pairs of opposite electrodes, and each opposite electrode is formed by forming an electrode film of a metal over the surface of a nonconducting base material by vacuum deposition or sputtering.
Abstract:
A combined inspection system for inspecting an object disposable in an object plane 19, comprises a particle-optical system, which provides a particle-optical beam path 3, and a light-optical system, which provides a light-optical beam path 5; and a controller 60, wherein the light-optical system comprises at least one light-optical lens 30 arranged in the light-optical beam, which comprises a first lens surface facing the object plane which has two lens surfaces 34, 35 and a through hole 32, wherein the particle-optical system comprises a beam deflection device 23, in order to scan a primary particle beam 15 over a part of the sample plane 19, and wherein the controller is configured to control the beam deflection device 23 in such a manner that a deflected primary particle beam 15 intersects an optical axis 3 of the particle-optical beam path in a plane which is arranged inside the through hole.
Abstract:
A direct-write electron beam lithography system employing a patterned beam-defining aperture to enable the generation of high current-density shaped beams without the need for multiple beam-shaping apertures, lenses and deflectors is disclosed. Beam blanking is accomplished without the need for an intermediate crossover between the electron source and the wafer being patterned by means of a double-deflection blanker, which also facilitates proximity effect correction. A simple type of “moving lens” is utilized to eliminate off-axis aberrations in the shaped beam. A method for designing the patterned beam-defining aperture is also disclosed.
Abstract:
Methods for nanoprobing a device structure of an integrated circuit. The method may include scanning a primary charged particle beam across a first region of the device structure with at least one probe proximate to the first region and a second region of the device structure is masked from the primary charged particle beam. The method may further include collecting secondary electrons emitted from the first region of the device structure and the at least one probe to form a secondary electron image. The secondary electron image includes the first region and the at least one probe as imaged portions and the second region as a non-imaged portion. Alternatively, the second region may be scanned by the charged particle beam at a faster scan rate than the first region so that the second region is also an imaged portion of the secondary electron image.
Abstract:
An apparatus for use with an electron beam for imaging a sample. The apparatus has a down-conversion detector configured to detect an electron microscopy signal generated by the electron beam incident on the sample, a direct bombardment detector adjacent to the down-conversion detector and configured to detect the electron microscopy signal, and a mechanism selectively exposing the down-conversion detector and the direct bombardment detector to the electron microscopy signal. A method using the apparatus is also provided.
Abstract:
Impurity ions are implanted into a semiconductor wafer of which a capacitor insulting film is formed on a principal face. In this impurity ion implantation step, the impurity ions are implanted into the semiconductor wafer in the form of a pulsed beam that repeats ON-OFF operation intermittently.