Abstract:
In conventional ETM circuit structures a pin connector in which the pin is etched from the ETM substrate and the mating cavity is etched from the ETM substrate to be mated. The connector utilizes the subtractive ETM structure processing to define any one of several pin-cavity configurations. The pin serves as an anchor with the metallurgical bonds with solder in the cavity that forms on the copper surfaces of the ETM circuit structure to give good mechanical strength to the connection. In particular four different configurations of interconnections are shown and described.
Abstract:
A multi-layer circuit board having air bridge crossover structures and an additive method for producing the same, wherein the circuit includes specially designed metallic fortifying layers (52,54) to mechanically and/or electrically fortify the circuit.
Abstract:
A printed circuit board and a method of manufacturing a printed circuit board are provided. The printed circuit board includes an insulating layer, a circuit layer embedded in the insulating layer, a solder resist layer disposed on one surface of the insulating layer, the solder resist layer having a cavity of a through-hole shape to expose a part of the circuit layer from the insulating layer, and a metal post embedded in the solder resist layer and exposed to outside via an opening of the solder resist layer, and the metal post includes a first post metal layer, a post barrier layer, and a second post metal layer disposed in that order.
Abstract:
Disclosed is a manufacturing method of a multi-layer wiring board, which method includes: preparing connection boards, the connection boards having respectively an insulating resin composition layer, a connection conductor formed so as to pass through the insulating resin composition layer and a conductor circuit formed on the insulating resin composition layer and connected to the connection conductor; aligning the connection boards; and laminating the aligned connection boards by heating and pressing, so that the connection conductors, or the connection conductor and the conductor circuit, are conductively connected with each other, and the connection boards are mechanically connected with each other by the insulating resin composition layer. The connection boards are formed by specified processing, including use of a three-layer composite metallic layer.
Abstract:
A layered metal structure is provided in accordance with an aspect of the invention. The structure can be used, for example, to fabricate a conductive interconnect element for conductively interconnecting one or more microelectronic elements. The layered structure includes first and second metal layers each of which may include one or more of copper or aluminum, for example. An intervening layer, may include for example, chromium between the first and second metal layers, chromium being resistant to an etchant usable to pattern the first and second metal layers selectively to the intervening layer. An etchant such as cupric chloride, ferric chloride (FeCl3), a peroxysulfuric composition, or a persulfate composition may be used to pattern the first and second metal layers in such case.
Abstract:
A method of fabricating a packaging substrate is disclosed. A cladding sheet comprised of a first metal foil, a second metal foil and an etch stop layer interposed between the first and second metal foils is provided. The first metal foil is then patterned into a first circuit trace. An insulating layer is laminated onto the first circuit trace. Thereafter, the second metal foil is patterned into a plurality of bump pads. The etch stop layer that is not covered by the bump pads is stripped off. A solder mask is applied to fill the spacing between the bump pads. A top surface of each of the bump pads is etched to form a bonding aperture in a self-aligned fashion.
Abstract:
The carrier (30) comprises a first etch mask (14), a first metal layer (11), an intermediate layer (12), a second metal layer (13) and a second etch mask (17). Both the first and the second etch mask (14, 17) can be provided in one step by means of electrochemical plating. After the first metal layer (11) and the intermediate layer (12) have been patterned through the first etch mask (14), an electric element (20) can be suitably attached to the carrier (30) using conductive means. In this patterning operation, the intermediate layer (12) is etched further so as to create underetching below the first metal layer (11). After the provision of an encapsulation (40), the second metal layer (13) is patterned through the second etch mask (17). In this manner, a solderable device (10) is obtained without a photolithographic step during the assembly process.
Abstract:
A multi-layer electronic circuit board design 10 having selectively formed apertures or cavities 26 which have improved solder-wetting characteristics by causing a first insulating layer to separate from a portion of a first conductive layer of the multi-layer electronic circuit board 10 which allows for communication by and between some or all of the various component containing surfaces, and portions of the formed multi-layer electrical circuit board 10, which selectively allows components contained within and/or upon these portions and surfaces to be interconnected.
Abstract:
A method 10, 110 for making multi-layer circuit boards having metallized apertures 38, 40, 130, 132 which may be selectively and electrically grounded and having at least one formed air-bridge 92, 178.