Abstract:
본 발명은 나노선의 패턴 형성방법에 관한 것으로, 보다 구체적으로는 상면에 나노선이 전이된 기판을 준비하여 포토리소그래피, 디벨로프 공정을 거친 후, 아세톤을 이용해 세척함으로써 나노선의 패턴을 형성하는 방법 및 이를 이용하여 제조된 전자소자에 관한 것이다. 본 발명에 따른 나노선의 패턴 형성방법은 나노선을 이용한 소자 어레이 구조를 제작할 때 반도체 소자를 만드는데 사용되는 기존 포토리소그래피 공정을 이용하여 나노선을 선택적으로 제거할 수 있으므로 주변 다른 소자들에 미치는 영향을 최소화 하면서 필요한 부분만 선택적으로 나노선을 남겨 패턴을 형성할 수 있다. 따라서, 기존 기술에 비해 간단하고, 저렴하고, 안전하게 공정을 진행할 수 있다는 효과를 가진다. 또한, 본 발명에 따른 나노선의 패턴 형성방법에 의해 형성된 나노선 패턴 구조는 나노선을 이용한 FET(Field Effect Transistor) 소자나 플렉서블 디스플레이 등에 응용이 가능하며, 다양한 종류의 나노선을 사용한 소자 제작에 응용이 가능하다.
Abstract:
PURPOSE: A field effect transistor component and a manufacturing method thereof are provided to form the micro-pattern by forming a pattern after depositing a passivation layer consisting of aluminium on the top of the organic semiconductor layer. CONSTITUTION: A pentacene is deposited on the top of a substrate(S100). An electrode layer including a source electrode and a drain electrode is deposited on both sides of the pentacene(S102). The passivation layer is deposited on the top of the pentacene and the electrode layer(S104). A photoresist is coated at the upper part of the passivation layer(S106).
Abstract:
본 발명은 정렬도가 향상된 오산화이바나듐 나노선 박막의 제조방법 및 그로부터 제조된 오산화이바나듐 나노선 박막에 관한 것으로서, 더욱 구체적으로는, a) 졸-겔 (sol-gel) 방법에 의해서 오산화이바나듐 나노선 (V 2 O 5 nanowire) 용액을 제조하는 단계; b) 상기 오산화이바나듐 나노선 용액을 물에 희석시키고, 랑뮈에-블라제 트러프 (Langmuir-Blodgett trough)에 투입하는 단계; c) 상기 오산화이바나듐 나노선 희석 수용액에 할로겐화 디옥타데실디메틸암모늄 용액의 분산을 용이하게 하기 위한 분산제를 첨가하는 단계; d) 할로겐화 디옥타데실디메틸암모늄 용액을 유기 용매에 희석시킨 다음, 이를 상기 랑뮈에-블라제 트러프의 오산화이바나듐 나노선 희석 수용액 표면 상에 도포하고 방치하는 단계; e) 상기 랑뮈에-블라제 트러프에 장착된 배리어 (barrier)를 사용하여 상기 할로겐화 디옥타데실디메틸암모늄 용액의 계면 압력을 조정하는 단계; f) 상기 랑뮈에-블라제 트러프의 침지 막대 (dipping arm)에 기판을 고정한 다음, 상기 기판을 상기 할로겐화 디옥타데실디메틸암모늄 용액의 계면과 접촉시키는 단계; 및 g) 상기 기판을 상기 침지 막대로부터 분리하는 단계를 포함하는 정렬도가 향상된 오산화이바나듐 나노선 박막의 제조방법 및 그로부터 제조된 오산화이바나듐 나노선 박막에 관한 것이다. 본 발명에 따르면, 졸-겔 합성법에 의해서 오산화이바나듐 나노선 박막을 제조하는 과정에 있어서, 나노선의 정렬도를 획기적으로 향상시킬 수 있을 뿐만 아니 라, 사후 세척 공정을 생략할 수 있어서 공정 단순화를 도모할 수 있으며, 제조된 나노선의 길이를 간편하게 재단할 수 있어서, 이를 이용하여 제조된 소자 특성의 재현성 확보 및 소자 특성 향상을 달성할 수 있다. 또한, 제조된 나노선 소자는 우수한 특성 및 재현성을 구비하므로, 전계 효과 트랜지스터 (Field Effect Transistor) 및 각종 센서의 제작 등에 광범위하게 활용될 수 있다. 오산화이바나듐 나노선 박막, 나노선 정렬
Abstract:
A nanowire thin film, a manufacturing method thereof and an electric component including the same are provided to facilitate the change or arrangement of the orientation and length of a nanowire. A method for fabricating a nanowire thin film comprises: a first step of pre-treating a stamp(100) so that a nanowire dispersing solution is coated on the stamp; a second step of coating the nanowire dispersing solution on the stamp having a concave part(110) and convex part(120); a third step of blowing a gas into the nanowire dispersing solution in order to arrange the nanowire(140); and a fourth step of contacting the stamp to a substrate so as to print the nanowire arranged on the convex part of the stamp on the substrate. The nanowire dispersing solution is obtained by a sol-gel synthesis method.
Abstract:
A method for fabricating a nano-cylindrical template and a nanoparticle array is provided to uniformly form nano-patterns. A method for fabricating a nano-cylindrical template and a nanoparticle array comprises: a first step of spin coating styrene-methacryl acid methyl block copolymer and a PEO coated gold nanoparticle solution on a substrate; a second step of annealing the substrate in a solvent under predetermined humidity condition in order to vertically arrange nano-cylindrical PMMA domain on the substrate; and a third step of selectively removing the vertically arranged PMMA domain so as to form a nanoporous template.
Abstract:
A substrate coating method using the high polymer stamp is provided, which performs the role of the improved barrier by uniformly forming the passivation layer. The silicon master having the first pattern is provided(S100). A high polymer stamp having the first pattern and second pattern is formed(S102). The polymer film dissolved in the chloroform transfers in the second pattern region of the high polymer stamp(S104). The polymer film of the high polymer stamp transfers in the top of the substrate(S106). The thermal process is performed according to use after removing the high polymer stamp from substrate(S108). The PMMA film is removed by using the acetone and supersonic vibration(S110).
Abstract:
A method for manufacturing a divanadium pentaoxide nano wire thin film with improved alignment is provided to conveniently cut manufactured nano wires in order to secure reproducibility and characteristic of devices. A method for manufacturing a divanadium pentaoxide nano wire thin film comprises the following steps of: preparing a divanadium pentaoxide nano wire(V2O5 nano-wire) solution; diluting the solution in water and inputting the diluted solution into the Langmuir-Blodgett trough; adding a dispersing agent to the diluted solution; diluting a halogenated dioctadecyl dimethylammonium solution in an organic solvent and coating the diluted halogenated dioctadecyl dimethylammonium solution on the surface of the diluted solution prepared in previous step; adjusting the interface pressure of the halogenated dioctadecyl dimethylammonium solution by using a barrier in the Langmuir-Blodgett trough; fixing a substrate on a dipping rod of the Langmuir-Blodgett trough and contacting the substrate with the interface of the halogenated dioctadecyl dimethylammonium solution; and separating the substrate from the dipping rod.
Abstract:
A method for preparing a TiO2 photocatalyst is provided to secure a catalyst support by an aluminum anodized film, increase surface area of the catalyst using nano-sized pores on a surface of the aluminum anodized film, and prepare the catalyst without surface defects by performing the heat treatment process of a TiO2 thin film, and a TiO2 photocatalyst prepared by the method is provided. A method for preparing a TiO2 photocatalyst comprises the steps of: electropolishing a thin aluminum sheet in an electrolyte; performing a first anodizing process in an acid solution relative to the electropolished thin aluminum sheet; performing an etching process relative to the first anodized thin aluminum sheet; performing a second anodizing process relative to the etched thin aluminum sheet; and depositing a thin TiO2 film onto a surface of the second anodized thin aluminum sheet. The electrolyte is a solution prepared by mixing ethanol with perchloric acid at a volume ratio of 3:1 to 5:1. The acid solution is an oxalic acid solution, a phosphoric acid solution, a sulfuric acid solution, a chromic acid solution, or mixed solutions thereof. The first and second anodizing processes are performed at a voltage of 30 to 50 V, an electric current of 0.001 to 0.009 A, and a temperature of 5 to 10 deg.C for 15 to 25 hours in the acid solution with a concentration of 0.1 to 1.0M. The etching process is performed at a temperature of 50 to 70 deg.C for 25 to 50 hours in a solution in which phosphoric acid is mixed with chromic acid at a weight ratio of 1:2 to 1:4. Further, the step of depositing a thin TiO2 film is performed by atomic layer deposition.
Abstract:
A pulsed laser deposition apparatus and a method for forming magnetic nano dot arrays using the same are provided to freely change a magnetic property of a composite metal nano dot array by using a single target. A pulsed laser deposition apparatus includes a substrate(190), a target(180), a target holder(160), a vacuum chamber(150), and an optical source(110). The substrate is a block copolymer template, on which a nano dot array pattern is formed. The target contains a material for a film to be formed on the substrate. The target holder mounts the target. The vacuum chamber receives the substrate, the target, and the target holder therein. The optical source emits a laser beam for vaporizing the material of the target. Plural metal layers with different kinds are formed on the same surface of the target.