Abstract:
본 발명은 산화물 반도체 나노섬유를 이용한 초고감도 가스센서 및 그 제조방법에 관한 것으로, 본 발명에 따른 가스센서는 절연기판; 절연기판 상부에 형성된 금속 전극; 및 금속 전극 상부에 형성된 고감응성을 갖는 나노입자가 도포된 산화물 반도체 나노섬유층을 포함하며, 이것은 산화물을 전기방사용 용액으로 제조한 후, 이를 전기방사하고, 열처리하여 산화물 반도체 나노섬유를 형성하고, 이어서, 큰 비표면적을 갖는 나노섬유 표면에 특정 가스에 고감응성을 갖는 나노크기의 금속산화물 또는 금속촉매 입자를 부분적으로 도포하여 초고감도, 고선택성, 고응답성, 장기 안정성의 특성을 갖는 산화물 반도체 나노섬유 가스센서를 제작할 수 있다. 초고감도, 나노섬유, 가스센서, 전기방사
Abstract:
본 발명은 정전용량형 환경유해가스 센서 및 그 제조방법에 관한 것이다. 본 발명에 따른 정전용량형 환경유해가스 센서는 절연기판; 상기 절연기판의 동일 평면 상에 일체형으로 형성된 금속전극 및 마이크로박막 히터 가열선; 및 상기 금속 전극 및 마이크로박막 히터 가열선 상에 코팅된 산화물 감지층을 포함하며, 이것은 금속층을 증착한 후, 금속전극과 마이크로박막 히터 가열선이 서로 인터디지털 트랜스듀서를 이루도록 금속층을 식각하고, 이어서 산화물 감지층을 형성하는 것으로 제조된다. 이와 같은 정전용량형 환경유해가스 센서는 제조시 공정수월성을 확보할 수 있으며, 고감도, 고선택성, 고안정성 및 저전력의 우수한 특성을 가질 수 있다. 센서, 정전용량형, 산화물
Abstract:
PURPOSE: A wireless power transmitter, a wireless power receiver, and a wireless power transmission method using the same are provided to determine an optimized transmission frequency according to a received power value, thereby improving transmission efficiency. CONSTITUTION: A wireless power transmitter(100) modulates a transmission frequency according to a predetermined value. The wireless power transmitter transmits a high frequency signal according to the modulated transmission frequency to one or more wireless power receivers(210). The wireless power receiver re-determines the predetermined value according to information corresponding to a power value of the received high frequency signal. The transmission frequency is modulated within a range of 10 percent of an independent resonant frequency. The information with respect to the power value is created from the wireless power receivers.
Abstract:
PURPOSE: A wireless power transferring device is provided to prevent unnecessary heat radiation. CONSTITUTION: A highly efficient wireless power transferring system includes power relay resonant coils(200,210) between a transfer coil(112) and a receiving coil(123). The transfer coil and the power relay resonant coils resonate each other. Resonant frequency adjusting units(201,211) are placed in each power relay resonant coil.
Abstract:
PURPOSE: A method for manufacturing porous oxide nanofiber and the porous oxide nanofiber are provided to form the nanofiber with a plurality of pours by electro-spinning composite solution with polymer beads and implementing a thermal treatment process. CONSTITUTION: A composite solution is prepared by mixing an oxide precursor, polymer, polymer beads, and a solvent(S11). The composite solution is undergone an electro-spinning process in order to obtain composite-fiber with the polymer beads(S12). The solvent is eliminated from the composite-fiber(S13). The composite-fiber is calcinated to obtain oxide nano-fiber(S14). The oxide precursor includes on selected from Zn, Sn, Ti, In, W, Cu, Ni, Ca, La, Y, Ce, Zr, Fe, V, Co, Al, K, Te, Ta, Pr, Nd, Nb, Li, Sm, Eu, Gd, Tb, Dy, Er, Yb, Bi, Ga, Si, Sr, Ba, Pt, Pd, Ag, Au, Ni, Ti, Cr, Ru, Mo, Rh, and the combination of the same.
Abstract:
PURPOSE: A thermoelectric-generator is provided to improve thermal efficiency by increasing electrical conductivity while reducing thermal conductivity. CONSTITUTION: A heat absorbing member(110) absorbs heat supplied from outside. A heat radiating member(130) emits the heat from the heat sink to outside. A wire part(120) connects the heat absorbing member to the heat radiating member through a plurality of nano wires having curvature A thermoelectric device applies magnetic field to the wire part to make a movement path for electronics and phonon different. The heat absorbing member, a heat radiating member, and a wire part are formed on the same substrate.
Abstract:
PURPOSE: A nanofiber environment filter is provided to maximize a non-surface area by laminating a functional nanofiber film to a plurality of layers, and to eliminate bio microorganism of a nano-unit and several environmental harmful gases at the same time. CONSTITUTION: A nanofiber environment filter(100) comprises a porous substrate(110) and a plurality of nanofiber films(120,130,140) which is laminated on a substrate having the respective responsivity on a plurality of materials; the porous substrate which is formed from porous ceramic, porous alumina or a porous semiconductor. The nanofiber film comprises nanofiber having high sensibility to different kinds of materials which are laminated by electrospinning to a double layer. The nanofiber film comprises organic nanofiber, organic/inorganic complex nanofiber, oxide nanofiber, carbon fiber or carbon/organic complex nanofiber.
Abstract:
An environmental gas sensor employing a nano-crystal composite oxide thin film and a manufacture method thereof are provided to show high-sensitivity, high-selectivity, long-term stability and low power-consumption. A method for manufacturing an environmental gas sensor(100) employing a nano-crystal composite oxide thin film comprises the following steps of: forming a metal electrode(120) on a substrate(110); and growing different sort of oxide nano-crystal particles on the metal electrode to form a nano-crystal composite oxide thin film(140). The growth of the different sort of oxide nano-crystal particles is performed by a pulsed laser deposition method or a sputter method using a different kind of oxide ceramic target. The step of forming the nano-crystal composite oxide thin film is performed in the temperature range of room temperature to 800°C.
Abstract:
An apparatus and a method for detecting fall-down, and a system and a method for emergency aid using the same are provided to allow elderly persons to enjoy their safe life irrespective of a place and a time by using a portable terminal. An apparatus for detecting fall-down includes a storing unit, an angular velocity measuring unit, an acceleration measuring unit, an acceleration extracting unit(15), and a fall-down determining unit(16). The storing unit stores fall-down data vectors. The angular velocity measuring unit measures an angular velocity value. The acceleration measuring unit measures an acceleration value. The acceleration extracting unit extracts a kinetic acceleration value and a gravitational acceleration value by filtering the acceleration value measured by the acceleration measuring unit. The fall-down determining unit converts the angular velocity value which is measured by the angular velocity measuring unit, and the kinetic acceleration value and the gravitational acceleration value which are extracted by the acceleration extracting unit, into a fall-down data vector, and determines a user's fall-down by comparing the converted fall-down data vector with the fall-down data vector stored in the storing unit.
Abstract:
A bio sensor is provided to reduce the production costs by using inexpensive bulk silicon substrate instead of expensive SOI(silicon on insulator) substrate, and improve sensing ability by electrically separating the substrate and sensing region through junction insulation. A bio sensor comprises: a first conduction type of semiconductor substrate(100) such as bulk silicon substrate; second conduction type of doped layers(110) formed on the semiconductor substrate; an electrode(120) formed in the upper parts of both ends of the doped layer; and probe molecules(130) immobilized to the doped layers, wherein the semiconductor substrate and doped layer are electronically separated through the junction insulation; and the doped layers have different immobilized probe molecules. A method for fabricating the bio sensor comprises the steps of: forming a second conduction type of doped layer on the first conduction type of semiconductor substrate; forming an electrode in the upper parts of both ends of the doped layer; and immobilizing the probe molecules to the doped layers. Further, the doped layers are epitaxial layers.