Abstract:
In one embodiment of the present invention, an electronic device includes a first emitter/collector region and a second emitter/collector region disposed in a substrate. The first emitter/collector region has a first edge/tip, and the second emitter/collector region has a second edge/tip. A gap separates the first edge/tip from the second edge/tip. The first emitter/collector region, the second emitter/collector region, and the gap form a field emission device.
Abstract:
In a microelectromechanical system (MEMS) device, a CMOS die is affixed to a die-mounting surface and wire-bonded to electrically conductive leads, and a MEMS die is stacked on and electrically coupled to the CMOS die in a flip-chip configuration. A package enclosure envelopes the MEMS die, CMOS die and wire bonds, and exposes respective regions of the electrically conductive leads.
Abstract:
According to one embodiment, a semiconductor device includes: a semiconductor substrate; and an insulating film provided above the semiconductor substrate. The insulating film includes: a plurality of first particles having a periodic structure; a plurality of second particles provided between the plurality of first particles and having an average particle outline size smaller than an average particle outline size of the plurality of first particles; and a filler provided between at least one of the plurality of first particles and the plurality of second particles.
Abstract:
A MEMS device is disclosed. The MEMS device includes a first substrate. At least one structure is formed within the first substrate. The first substrate includes at least one first conductive pad thereon. The MEMS device also includes a second substrate. The second substrate includes a passivation layer. The passivation layer includes a plurality of layers. A top layer of the plurality of layers comprises an outgassing barrier layer. At least one second conductive pad and at least one electrode are coupled to the top layer. At least one first conductive pad is coupled to the at least one second conductive pad.
Abstract:
The MEMS shutter includes a shutter having an aperture part, a first spring connected to the shutter, a first anchor connected to the first spring, a second spring and a second anchor connected to the second spring, an insulation film on a surface of the shutter, the first spring, the second spring, the first anchor and the second anchor, the surfaces being in a perpendicular direction to a surface of a substrate, and the insulation film is not present on a surface of the plurality of terminals, and a surface of the shutter, the first spring, the second spring, the first anchor and the second anchor, the surfaces being in a parallel direction to a surface of the substrate and on the opposite side of the side facing the substrate.
Abstract:
A method for fabricating MEMS device includes: providing a single crystal substrate, having first surface and second surface and having a MEMS region and an IC region; forming SCS mass blocks on the first surface in the MEMS region; forming a structural dielectric layer over the first surface of the substrate, wherein a dielectric member of the structural dielectric layer is filled in spaces surrounding the SCS mass blocks in the MEMS region, the IC region has a circuit structure with an interconnection structure formed in the structural dielectric layer; patterning the single crystal substrate by an etching process on the second surface to expose a portion of the dielectric member filled in the spaces surrounding the SCS mass blocks; performing isotropic etching process at least on the dielectric portion filled in the spaces surrounding the SCS mass blocks. The SCS mass blocks are exposed to release a MEMS structure.
Abstract:
A layer system is described including a silicon layer and a passivation layer which is applied at least regionally to the silicon layer's surface, the passivation layer having a first, at least largely inorganic partial layer and a second partial layer, the second partial layer being made of an organic compound including silicon or containing such a material. In particular, the second partial layer is structured in the form of a “self-assembled monolayer.” Furthermore, a method is described for creating a passivation layer on a silicon layer, a first, inorganic partial layer being created on the silicon layer and a second partial layer, containing an organic compound including silicon or being made thereof, being created at least in certain areas on the first partial layer. Both partial layers form the passivation layer. The described layer system or the described method is particularly suited for creating self-supporting structures in silicon.
Abstract:
A method and apparatus for fabrication of passivated microfluidic structures is disclosed. The method includes providing a substrate having a microfluidic structure formed therein. The microfluidic structure is embedded by an embedding layer. The method further includes passivating the embedded microfluidic structure by locally heating the microfluidic structure surface in a reactive atmosphere, wherein the passivated microfluidic structure is suitable for transporting a fluid. The structure optionally further includes metal pads to form an electrokinetic pump.
Abstract:
A micromechanical component and a method for producing the component are provided. The micromechanical component includes a substrate and a micromechanical functional layer of a first material provided over the substrate. The functional layer has a first and second regions, which are connected by a third region of a second material, and at least one of the regions is part of a movable structure, which is suspended over the substrate.
Abstract:
The invention relates to a microstructure in a preferably electrically conductive substrate (1), more specifically made of doped single crystal silicon, with at least one functional unit (2.1, 2.2) and to a method of fabricating the same. In accordance with the invention, the functional unit (2.1, 2.2) is mechanically and electrically separated from the substrate (1) on all sides by means of isolation gaps (5, 5a) and is connected, on at least one site, to a first structure (4a) of an electrically conductive layer (S) that is electrically isolated from the substrate (1) by way of an isolation layer (3) and that secures the unit into position relative to the substrate (1). For this purpose, the functional unit (2.1, 2.2) is released from the substrate (1) in such a manner that the isolation gaps (5, 5a) are provided on all sides relative to the substrate (1). The electrically conductive layer (S) is applied in such a manner that it is connected through contact fingers (4a) for example to the functional unit (2.1, 2.2) which it secures into position. The method in accordance with the invention permits to substantially facilitate the manufacturing process and to produce a microstructure with but small parasitic capacitances.