Abstract:
An object of the present disclosure is to be able to further reduce the size of a substrate structure including a plurality of elements. The substrate structure includes: a base substrate that includes a first conductive plate and a second conductive plate; a first element connected to the first conductive plate and the second conductive plate; and a second element connected to the first conductive plate and the second conductive plate. The first conductive plate and the second conductive plate are disposed on the same plane on the base substrate in a state of being electrically insulated from each other, the first element is mounted on a first main surface of the base substrate, and the second element is mounted on a second main surface that is on the opposite side to the first main surface relative to the base substrate.
Abstract:
There are provided a printed circuit board and a manufacturing method thereof. The printed circuit board includes: a core layer having a cavity provided therein; an electronic component included in the cavity; a conductive partition disposed on a side of the cavity; and insulating layers disposed on and below the core layer.
Abstract:
A L-Bending PCB includes a straight portion and a bending portion connecting to the straight portion, the straight portion has a metal substrate bottom, an insulation layer, a conductive layer and a protective layer. The insulation layer is disposed on a partial surface of the metal substrate bottom, the conductive layer is disposed on the insulation layer and the protective layer is disposed on the conductive layer.
Abstract:
An apparatus including a package substrate including a plurality of layers of conductive material, the package substrate including a cavity; and a device in the cavity, wherein an ultimate layer of the plurality of layers of conductive material defines contacts to contact points of the device. An apparatus including a package substrate comprising a plurality of conductive layers and a silicon bridge die disposed between ones of the plurality of conductive layers and an ultimate layer of the plurality of conductive layers defines contact points to contact points of the silicon bridge die; and a logic die coupled to the contact points of the ultimate layer of the plurality of layers of conductive layers.
Abstract:
A height of a signal transmission device is decreased as low as possible as maintaining or improving a cooling performance for the communication module. Ina signal transmission device provided with a communication module provided on a substrate and a cooling mechanism for cooling the communication module, the cooling mechanism includes: a heat-transfer plate including a first region which overlaps with bottom surfaces of a plurality of the communication modules and is thermally connected to the bottom surfaces and a second region which does not overlap with the bottom surfaces of the communication modules; and a heat-release fin provided in the second region of the heat-transfer plate.
Abstract:
Heat transfer management apparatuses according to the present disclosure includes a composite lamina having an insulator substrate and a thermal conductor at least partially embedded in the insulator substrate, a temperature-sensitive component coupled to the composite lamina, and a temperature-insensitive component coupled to the composite lamina and positioned distally from the temperature-sensitive component. The temperature-insensitive component produces heat during operation. The thermal conductor and the insulator substrate are arranged into a targeted heat transfer region proximate to the temperature-sensitive component and a bulk region proximate to the temperature-insensitive component. The targeted heat transfer region and the bulk region are in thermal continuity with one another.
Abstract:
A multi-cavity wiring board includes a coreless substrate, an adhesive, and a stiffener having a plurality of apertures with lateral shielding sidewalls. The coreless substrate covers the stiffener and includes electrical pads exposed from the apertures of the stiffener as electrical contacts for semiconductor devices packaged within the apertures. The aperture sidewalls of the stiffener can serve as effective lateral electromagnetic shields for the semiconductor devices within the apertures.
Abstract:
An embodiment is directed to an IC mounting assembly that comprises an IC device having a first planar surface, wherein multiple electrically conductive first terminals are located at the first surface. The assembly further comprises an IC device mounting platform having a second planar surface in closely spaced relationship with the first surface, wherein multiple electrically conductive second terminals are located at the second surface, each second terminal corresponding to one of the first terminals. A solder element extends between each first terminal and its corresponding second terminal, and a constraining element is fixably joined to the second surface, wherein the constraining element has a CTE which is selectively less than the CTE of the mounting platform at the second surface. The constraining element is provided with a number of holes or apertures, and each hole is traversed by a solder element that extends between a first terminal and its corresponding second terminal.
Abstract:
An embodiment is directed to an IC mounting assembly that comprises an IC device having a first planar surface, wherein multiple electrically conductive first terminals are located at the first surface. The assembly further comprises an IC device mounting platform having a second planar surface in closely spaced relationship with the first surface, wherein multiple electrically conductive second terminals are located at the second surface, each second terminal corresponding to one of the first terminals. A solder element extends between each first terminal and its corresponding second terminal, and a constraining element is fixably joined to the second surface, wherein the constraining element has a CTE which is selectively less than the CTE of the mounting platform at the second surface. The constraining element is provided with a number of holes or apertures, and each hole is traversed by a solder element that extends between a first terminal and its corresponding second terminal.
Abstract:
A backlight structure comprises a frame, a circuit board, and a connector. The frame has an opening. The circuit board is located below the frame and has a through hole, wherein the through hole aligns with the opening. The connector passes through the opening and the through hole, protrudes from a surface of the frame, and is electrically connected to the circuit board.