Abstract:
PURPOSE: A method for manufacturing an interconnection using a hydrogen silsesquioxane(HSQ) layer as an interlayer dielectric is provided to simplify a process for forming the interconnection, by performing a plasma treatment regarding the HSQ layer so that the HSQ layer is not damaged in a photolithography process to directly pattern the HSQ layer. CONSTITUTION: A low dielectric layer is formed on a semiconductor substrate(10). A plasma treatment process is performed regarding the entire surface of the low dielectric layer. The plasma-treated low dielectric layer is patterned to form an opening exposing a predetermined region of the semiconductor substrate. A conductive layer filling the opening is formed on the entire surface of the semiconductor substrate.
Abstract:
PURPOSE: A metal layer formation method of semiconductor devices using a damascene processing is provided to prevent an increase of a dielectric constant and a damage of an insulating layer. CONSTITUTION: After forming an insulating layer(35) having a contact hole on a semiconductor substrate, an etch stopper(40) is formed on the insulating layer. An SOG(Spin On Glass) layer is coated on the etch stopper(40). The surface of the SOG layer is densificated or cured by irradiating electron beams or implanting dopants, thereby forming a cured SOG layer(45). The cured SOG layer(45) is then globally planarized by CMP. A trench is formed by selectively etching the cured SOG layer(45). Then, a metal layer is filled into the trench.
Abstract:
PURPOSE: A trench isolation method is provided to simplify a manufacturing process and reduce an aspect ratio in filling a trench as compared with a shallow trench isolation(STI) method by using a photoresist pattern as a mask for forming the trench, and to uniformly maintain chemical mechanical polishing(CMP) quantity for forming an isolation layer of a uniform thickness by using CeO2 based polishing agent having a large CMP selectivity of a silicon substrate and an oxidation layer. CONSTITUTION: A photoresist pattern is formed on a side of a bare silicon substrate(100). A predetermined depth of the substrate is etched to form a trench by using the photoresist pattern as an etching mask. The photoresist pattern is eliminated. An insulating layer is formed in the trench. A chemical mechanical polishing(CMP) process is performed regarding the resultant structure having the insulating layer by using slurry including CeO2 based polishing agent until the substrate is exposed.
Abstract:
PURPOSE: A method for forming a trench isolation is provided to prevent a dent from being generated around an insulating layer on a side wall when forming a trench isolation. CONSTITUTION: A method for forming a trench isolation includes a first through sixth step. The first step is to form a first oxide layer on a semiconductor substrate(30) by using N2 gas and O2 gas and to form a first N2O film(36) on a boundary of the semiconductor substrate. The second step is to deposit a first nitride layer on the first oxide layer. The third step is to define an active area and an inactive area by patterning the first oxide layer, the first nitride layer and the first N2O layer. The fourth step is to form a trench by etching the semiconductor substrate of the inactive area with a predetermined depth. The fifth step is to form a second oxide layer on a side wall of the trench by using the O2 gas and the N2 gas and to form a second N2O layer(42a,42b) on a boundary of the semiconductor substrate. The sixth step is to form a trench isolation by filling up a third oxide layer on the trench.
Abstract:
트랜치를 이용한 반도체 소자의 분리 방법에 있어서, 개구부와 인접하는 다층 구조의 모서리를 둥글게 형성하는 방법에 대하여 기재되어 있다. 이는, 반도체 기판 상에 스트레스 버퍼층, 산화 방지층 및 식각 방지층이 순차적으로 적층된 다층 구조의 일부 영역을 제거함으로써 반도체 기판을 노출 시키는 개구부를 형성하는 단계, 개구부 양측의 다층 구조를 식각함으로써 개구부에 인접한 다층 구조의 상부 모서리를 둥글게 형성하는 단계 및 개구부에 의해 노출된 반도체 기판을 식각함으로써 반도체 기판에 트랜치를 형성하는 단계를 포함하는 것을 특징으로 하는 트랜치를 이용한 반도체 소자의 분리 방법을 제공한다. 이로써, 소자 분리막 내에 보이드가 형성되는 것을 방지하여 반도체 소자의 소자 분리 특성을 개선할 수 있다.
Abstract:
반도체 소자를 분리시키기 위한 트렌치 구조에 있어서, 트렌치 입구와 인접한 반도체 기판의 활성 영역에 제1불순물층, 트렌치 저면 하부에 제2불순물층이 형성된 분리 구조에 대하여 개재되었다. 이는 통상의 방법에 의하여 트렌치를 형성시키고, 상기 트렌치의 내측벽 및 저면에 절연막을 형성시킨 후상기 절연막 상의 소정 부위에 스페이서를 형성시키고 이를 마스크로 하여 불순물을 도핑시켜 제1불순물층과 제2불순물층을 형성시킨 후, 상기 트렌치 내부에 제2절연막을 형성시킴으로 상기의 트렌치 구조가 형성된다. 상기에 의한 반도체 소자의 분리는 종래의 소자 분리가 갖는 문제점을 해결, 즉 트렌치의 내측벽과 소자 활성 영역의 반도체 기판 상부면에 의하여 형성된 경계부의 소정 영역에 제1불순물층을, 상기 트렌치 저면 하부의 소정 영역에 제2불순물층을 구비시켜, 소자 분리에서 발생되는 누설 전류의 발생을 방지시킴으로써 반도체 소자의 전기적 특성이 향상된다.
Abstract:
탄소나노물질을 갖는 반도체 장치가 제공된다. 상기 반도체 장치는 기판, 상기 기판 상에 트렌치를 갖는 제 1 층간 절연막, 상기 트렌치의 하부에 제공된 하부 도전패턴, 상기 트렌치의 상부에 제공된 촉매 금속층, 상기 제 1 층간 절연막 상에 상기 촉매 금속층을 노출하는 개구부를 갖는 제 2 층간 절연막, 및 상기 개구부에 제공되고 상기 촉매 금속층으로부터 성장된 탄소나노물질을 포함한다. 탄소나노튜브, 콘택, 비아, 구리, 장벽층
Abstract:
A semiconductor device and a forming method thereof are provided to improve current characteristics by growing vertically and uniformly a carbon nano-material. A first interlayer dielectric(110) having a trench is formed on a substrate(100). A lower conductive pattern(120) is provided within the trench. A catalytic metal layer(134) is provided on the lower conductive pattern within the trench. A second interlayer dielectric(140) is formed on the first interlayer dielectric. The second interlayer dielectric includes an opening for exposing the catalytic metal layer. A carbon nano-material is provided in the opening and is grown from the catalytic metal layer. The lower conductive pattern includes copper. A first barrier layer(122) is formed between the lower conductive pattern and the catalytic metal layer in order to prevent the migration of the copper.
Abstract:
A capacitor includes an upper electrode formed by physical vapor deposition and chemical vapor deposition. The upper electrode of the capacitor may include a first upper electrode formed by chemical vapor deposition and a second upper electrode formed by physical vapor deposition. Alternatively, the upper electrode may include a first upper electrode formed by physical vapor deposition and a second upper electrode formed by chemical vapor deposition. The upper electrode of the capacitor is formed through two steps using chemical vapor deposition and physical vapor deposition. Therefore, the upper electrode can be thick and rapidly formed, whereby electrical characteristics of the upper electrode are not deteriorated.
Abstract:
A Scalable Two-Transistor Memory (STTM) cell array having a 4F unit cell area, where F is the minimum feature size. The data lines and the bit lines alternate and are adjacent to each other along the Y-axis direction, and the word lines are laid out along the X-axis direction. Each STTM cell consists of a floating gate MOS sensing transistor at the surface of a semiconductor substrate, with a vertical double sidewall gate multiple tunnel junction barrier programming MOS transistor on top of the sensing transistor. A data line connects all source regions of the programming transistors and a bit line connects all the source/drain regions of the sensing transistors in a column direction. A word line connects all double sidewall gate regions of programming transistors in a row direction. This invention also deals with a column addressing circuit as well as the driving method for the circuit.