Abstract:
본 발명의 실시예에 따른 워터자켓을 구비한 실린더헤드는, 연소실을 형성하는 실린더헤드, 및 상기 실린더헤드와 일체로 외부로 돌출되어 형성되되, 상기 연소실과 통하는 배기출구집합부가 외측면에 형성되는 돌출부를 포함하되, 상기 배기출구집합부와 상기 연소실을 연결하도록 상기 돌출부에 형성되는 배기통로의 상하부로 워터자켓이 상기 돌출부 내부에 형성된다. 상기 워터자켓은, 상기 돌출부의 상부면을 따라서 형성되는 상부워터자켓, 상기 돌출부의 하부면을 따라서 형성되는 하부워터자켓, 및 상기 상부워터자켓과 상기 하부워터자켓을 연결하는 연결워터자켓을 포함한다. 따라서, 실린더헤드의 일측면에 배기매니폴드가 일체로 형성되고, 그 내부에 워터자켓이 상부와 하부에 넓게 형성되며, 이들을 연결워터자켓이 열결하는 구조로, 냉각수의 흐름이 원활해져 상기 실린더헤드와 상기 돌출부를 효과적으로 냉각한다.
Abstract:
PURPOSE: A variable geometry turbocharger is provided to simplify a manufacturing process by removing of a guide, a guide pin, and a nozzle ring pin and save manufacturing cost. CONSTITUTION: A variable geometry turbocharger comprises a nozzle ring(10), a unison ring(20), a vane(40), a vane shaft, a vane arm, and an operating unit(50). The protrusion(12) of the nozzle ring is protruded toward one surface in a radial direction. The unison ring is placed in the protrusion on one surface of the nozzle ring. The vane is installed on the other surface of the nozzle ring. The vane shaft is connected to the vane and passes through the nozzle ring. The vane arm is connected to the vane and is rotatably coupled to the unison ring. The operating unit rotates the unison ring relatively to the nozzle ring.
Abstract:
PURPOSE: A valve driving system having variable valve timing of turbo charger engine and method for controlling the same are provided to achieve improved accelerating performance by reducing a turbo lag, while improving fuel efficiency and reducing emission of exhaust gas. CONSTITUTION: A valve driving system comprises a valve(3) for opening/shutting an intake/exhaust port(2); an armature(5) fixed to a valve stem(4) extended upward from the valve; a valve opening electromagnet(7) arranged beneath the armature and supported by a cylinder head(1), which sucks the armature when excited, lowers the valve and opens the intake/exhaust port; a valve shutting electromagnet(6) arranged on the armature and opposed to the valve opening electromagnet, which sucks the armature when excited, lifts the valve and opens the intake/exhaust port; an upper spring retainer(8) fixed to the valve stem; an upper return spring(10) for applying force to the valve spring retainer in the valve opening direction; a lower spring retainer(11) fixed to the valve stem; a lower return spring(13) for applying force to the lower spring retainer in the valve shutting direction; and an electronic control unit(14) for controlling the valve opening electromagnet and the valve shutting electromagnet.
Abstract:
PURPOSE: A method for controlling the exhaust gas of an engine is provided to purify combustion gas by temporarily storing the combustion gas generated in initial starting in a pause cylinder and exhausting the combustion gas after ternary catalyst is activated. CONSTITUTION: A method for controlling the exhaust gas of an engine comprises the steps of: determining whether the engine is in starting state(S110); controlling one time ignition in order of a first, third, fourth, second cylinder(S120); controlling the pause of the first and fourth cylinders(S130); normally operating the second and third cylinders(S140); measuring the temperature of catalyst(S150); normally operating the first cylinder after the first cylinder exhausts combustion gas(S160); and normally operating the fourth cylinder after the fourth cylinder exhausts combustion gas(S170).
Abstract:
터보 랙 개선 장치는 복수개의 실린더, 상기 복수개의 실린더에 공기를 공급하기 위한 흡기 매니폴드, 그리고 상기 복수개의 실린더에서 발생한 배기가스를 배출하기 위한 배기 매니폴드를 포함하는 엔진; 신선한 공기를 상기 흡기 매니폴드에 공급하기 위하여 상기 흡기 매니폴드에 연결되어 있는 흡기 통로; 상기 배기 매니폴드에 모인 배기가스를 외부로 배출하기 위하여 상기 배기 매니폴드에 연결되어 있는 배기 통로; 상기 배기 매니폴드 또는 상기 배기 통로에 장착되어 배기가스에 의하여 회전하는 터빈 그리고 흡기 통로에 장착되어 있으며 상기 터빈에 연결되어 터빈과 함께 회전하며 흡기 통로의 공기를 압축하는 제1컴프레서를 포함하는 터보 챠져; 상기 흡기 통로의 제1지점에서 분기되어 상기 제1지점의 하류에 있는 상기 흡기 통로의 제2지점에서 상기 흡기 통로와 합쳐지는 바이패스 통로; 상기 바이패스 통로를 상기 흡기 통로에 선택적으로 연통시키는 컨트롤 밸브; 상기 바이패스 통로에 장착되어 있으며, 상기 바이패스 통로를 통과하는 공기를 압축하는 제2컴프레서; 그리고 상기 제2컴프레서를 작동시키기 위한 동력을 생성하여 상기 동력을 동력 전달 장치를 통해 선택적으로 상기 제2컴프레서에 공급하는 구동 장치;를 포함하는 것을 특징으로 한다.
Abstract:
PURPOSE: A flow reinforced structure inside a cylinder is provided to reinforce a flow inside the cylinder, to prevent a decrease in an air intake amount, and to improve engine performance. CONSTITUTION: A flow reinforced structure inside a cylinder comprises a flow reinforcing member(100) in the lower part of an air intake passage(10) of an engine cylinder. The flow reinforcing member includes an adapter(110), a flap(120) of a panel shape, and a shaft. The flap is mounted in a flowing hole of the adapter to be rotatable. The shaft is inserted into one end of the flap, is mounted in the adapter, and rotates the flap according to rotation.
Abstract:
PURPOSE: The scroll supplying the exhaust flow energy to turbine is disunited to two. The exhaust flow energy can be secured in the low speed. CONSTITUTION: An internal combustion engine comprises a cylinder head(100) and two more scrolls(301,302), and a shield. The cylinder head has exhaust ports(102a, 102b, 102c, 102d) of the pair per each the cylinder. In two more scrolls, a supercharging unit is connected to each exhaust port of the cylinder head. The scroll is arranged so that the exhaust gas exhausted from the exhaust port flow in into the supercharging unit. By selectively supplying the exhaust gas among scroll to one side it cross sections scroll, the shield reduces. The variable valve device for being selectively opened and closed is installed among a pair of exhaust ports in one exhaust port. The scroll of two is formed within the supercharging unit. The shield is installed in order to selectively open and close one side scroll among the scroll of two.
Abstract:
A cylinder head and an exhaust system are provided to improve performance of the engine and space utilization of the engine room. A cylinder head and an exhaust system comprises an exhaust manifold unit which is formed inside the cylinder head. The exhaust manifold unit comprises first, second, third, fourth, fifth and sixth exhaust manifolds(210~260) connected to first, second, third, fourth, fifth and sixth exhaust ports. The first and second exhaust manifolds are connected to each other and form a first connector(270). The fifth and sixth exhaust manifolds are connected to each other and form a second connection part(280). The first connector is connected to the third exhaust manifold. The second connector is connected to the fourth exhaust manifold.