Abstract:
A gas detector (54) and process for detecting a fluorine-containing species in a gas containing same, e.g., an effluent of a semiconductor processing tool undergoing etch cleaning with HF, NF3, etc. The detector in a preferred structural arrangement employs a microelectromechanical system (MEMS)-based device structure and/or a free-standing metal element (8) that functions as a sensing component and optionally as a heat source when elevated temperature sensing is required. The free-standing metal element can be fabricated directly onto a standard chip carrier/device package (6) so that the package becomes a platform of the detector.
Abstract:
The present invention relates to an electrode assembly useful for analyzing metal electroplating solutions. Such electrode assembly comprises a measuring electrode, preferably a rotating disc electrode or a microelectrode, and at least one of an in situ cleaning mechanism, a nucleation and metal growth optimization mechanism, and a voltage limiting mechanism. The present invention also relates to usage of such electrode assembly for in situ cleaning of the measuring electrode, nucleation and metal growth optimization, or voltage limitation.
Abstract:
A gas detector (54) and process for detecting a fluorine-containing species in a gas containing same, e.g., an effluent of a semiconductor processing tool undergoing etch cleaning with HF, NF3, etc. The detector in a preferred structural arrangement employs a microelectromechanical system (MEMS)-based device structure and/or a free-standing metal element (8) that functions as a sensing component and optionally as a heat source when elevated temperature sensing is required. The free-standing metal element can be fabricated directly onto a standard chip carrier/device package (6) so that the package becomes a platform of the detector.
Abstract:
A method and system for analysis of additives in electrolysis plating solutions, using a flow management system that minimizes loss of plating solutions and decreases sampling time. The system includes at least one analysis chamber, a sampling duct connected to processing tool, a four-way valve positioned between the processing tool and the sampling duct, at least one carrier fluid duct connected to the analysis chamber, at least one actuatable multi-port valve that provides a transference platform between the sampling duct and the at least one carrier fluid duct, and a flow sensor connected to the sampling duct and positioned downstream from the at least one actuatable multi-port valve.
Abstract:
A gas detector and process for detecting a fluorine-containing species in a gas containing same, e.g., an effluent of a semiconductor processing tool undergoing etch cleaning with HF, NF3, etc. The detector in a preferred structural arrangement employs a microelectromechanical system (MEMS)-based device structure and/or a free-standing metal element that functions as a sensing component and optionally as a heat source when elevated temperature sensing is required. The free-standing metal element can be fabricated directly onto a standard chip carrier/device package so that the package becomes a platform of the detector.
Abstract:
A gas detector and process for detecting a fluorine-containing species in a gas containing same, e.g., an effluent of a semiconductor processing tool undergoing etch cleaning with HF, NF3, etc. The detector in a preferred structural arrangement employs a microelectromechanical system (MEMS)-based device structure and/or a free-standing metal element that functions as a sensing component and optionally as a heat source when elevated temperature sensing is required. The free-standing metal element can be fabricated directly onto a standard chip carrier/device package so that the package becomes a platform of the detector.
Abstract:
A hydrogen gas detector for detection of hydrogen gas in a gaseous environment. The detector comprises a light/heat source, an optical detector, and an optical barrier between the source and detector. The optical barrier responds to the presence of hydrogen by responsively changing from a first optical state to a different second optical state, whereby transmission of light from the light/heat source through the optical barrier is altered by the presence of hydrogen and the altered transmission is sensed by the optical detector to provide an indication of the presence of hydrogen gas in the gaseous environment.
Abstract:
The present invention relates to antioxidant analysis for solder plating solutions, by using a complexing solution comprising a molybdenum compound, such as MoO2Cl2, to form a highly colored antioxidant-molybdenum complex, which can be detected and analyzed by UV-Vis spectroscopic, as a basis for concentration determination for the antioxidant.