Abstract:
A lithographic apparatus comprising: a positioning stage (WT); an isolation frame (300); a projection system (PS), comprising a first frame (210); a second frame (220); a supporting frame (10) for supporting the positioning stage; a first vibration isolation system (250) and a second vibration isolation system (270), wherein the supporting frame and the first frame are coupled via the first vibration isolation system; a stage position measurement system (400) to determine directly the position of a stage reference of an element of the positioning stage in one or more degrees of freedom with respect to an isolation frame reference of an element of the isolation frame; and wherein the first frame and the isolation frame are coupled via the second vibration isolation system.
Abstract:
A method of modifying a lithographic apparatus comprising an illumination system for providing a radiation beam, a support structure for supporting a patterning device to impart the radiation beam with a pattern in its cross-section, a first lens for projecting the radiation beam at the patterning device with a first magnification, a substrate table for holding a substrate, and a first projection system for projecting the patterned radiation beam at a target portion of the substrate with a second magnification. The first lens and the first projection system together provide a third magnification. The method comprises reducing by a first factor the first magnification to provide a second lens for projecting the radiation beam with a fourth magnification; and increasing by the first factor the second magnification to provide a second projection system for projecting the patterned radiation beam at the target portion of the substrate with a fifth magnification.
Abstract:
An electromagnetic motor is described, the electromagnetic motor comprising: a magnet assembly configured to generate a two-dimensional alternating magnetic field having a pitch Pm1 in a first direction and a pitch Pm2 in a second direction; a coil assembly configured to co-operate with the magnet assembly to generate a first force in the first direction and a second force in the second direction, wherein the coil assembly comprises a first coil set comprising a plurality of first coils for generating the first force and a second coil set comprising a plurality of second coils for generating the second force, wherein a ratio R1 of a coil pitch Pc1 in the first coil set in the first direction over Pm1 is different from a ratio R2 of a coil pitch Pc2 in the second coil set in the second direction over Pm2.
Abstract:
A support apparatus (60) for a lithographic apparatus has an object holder (61) and an extraction body (65) radially outward of the object holder. The object holder is configured to support an object (W). The extraction body includes an extraction opening (66) configured to extract fluid from a top surface of the support apparatus. The extraction body is spaced from the object holder such that the extraction body is substantially decoupled from the object holder. The extraction body comprises a projection (30) configured such that it surrounds the object holder and such that, in use, a layer of liquid (32) is retained on the projection and in contact with an object supported on the object holder.
Abstract:
The invention relates to a bearing device arranged to support in a vertical direction a first part of an apparatus with respect to a second part of the apparatus, comprising a magnetic gravity compensator. The magnetic gravity compensator comprises: a first permanent magnet assembly mounted to one of the first part and the second part and comprising at least a first column of permanent magnets, the first column extending in the vertical direction, wherein the permanent magnets have a polarization direction in a first horizontal direction or in a second horizontal direction opposite to the first horizontal direction, wherein vertically adjacent permanent magnets have opposite polarization directions, a second permanent magnet assembly mounted to the other of the first part and the second part and comprising at least one other column of permanent magnets, the at least one other column extending in the vertical direction, wherein vertically adjacent permanent magnets of the at least one other column have opposite polarization directions in the first horizontal direction or the second horizontal direction, wherein the first permanent magnet assembly at least partially encloses the second permanent magnet assembly.
Abstract:
A lithographic apparatus comprising a projection system configured to project a patterned radiation beam to form an exposure area on a substrate held on a substrate table, the lithographic apparatus further comprising a cooling apparatus for cooling the substrate, wherein the cooling apparatus comprises a cooling element located above the substrate table and adjacent to the exposure area, the cooling element being configured to remove heat from the substrate.
Abstract:
A lithographic apparatus comprising a support structure configured to be moved by a first scan distance during a single scanning operation when supporting a patterning device having a first extent in the scanning direction and to be moved by a second scan distance during a single scanning operation when supporting a patterning device having a second extent in the scanning direction, and a substrate table configured to be moved by a third scan distance during a single scanning operation when the support structure supports a patterning device having the first extent in the scanning direction and to be moved by a fourth scan distance during a single scanning operation when the support structure supports a patterning device having the second extent in the scanning direction.
Abstract:
A lithographic apparatus comprising a moveable object (WT) and a displacement measuring system arranged to determine a position quantity of the moveable object. The displacement measuring system comprises an encoder (EC) and a grid structure. One of the encoder and the grid structure is connected to the moveable object. The grid structure comprises a high precision grid portion (HG) and a low precision grid portion (LG). The encoder is arranged to cooperate with the high precision grid portion to determine the position quantity relative to the grid structure with a high precision. The encoder is arranged to cooperate with the low precision grid portion to determine the position quantity relative to the grid structure with a low precision.
Abstract:
A substrate table system includes a substrate table (WT) and a dual directional motor for moving the substrate table in a plane of movement. The plane of movement is defined by a first direction and a second direction perpendicular to the first direction. The dual directional motor includes: a first pusher structure (FPS) extending in the first direction, the substrate table being movable in respect of the first pusher structure, the first pusher structure and the substrate table being arranged to cooperate so as to form a first motor arranged to exert a force between the first pusher structure and the substrate table in the first direction; and a second pusher structure (SPS) extending in the first direction, the substrate table being movable in respect of the second pusher structure (along the first and second directions), the second pusher structure and the substrate table being arranged to cooperate so as to form a second motor arranged to exert a force between the second pusher structure and the substrate table in the second direction.
Abstract:
A support apparatus for a lithographic apparatus has an object holder and an extraction body radially outward of the object holder. The object holder is configured to support an object. The extraction body includes an extraction opening configured to extract fluid from a top surface of the support apparatus. The extraction body is spaced from the object holder such that the extraction body is substantially decoupled from the object holder. The extraction body comprises a projection configured such that it surrounds the object holder and such that, in use, a layer of liquid is retained on the projection and in contact with an object supported on the object holder.