Abstract:
A process for fabricating a LED lighting apparatus includes disposing a composite coating on a surafce of a LED chip, The composite coating comprises a first composite layer having a manganese doped phosphor of formula I and a first binder and a second composite layer comprising a second phosphor composition and a second binder. The first binder, the second binder or both include a poIy(meth)acrylate. Ax [MFy]:Mn4+.......... (I), wherein A is Li, Na. K, Rb, Cs, or a combination thereof; M is Si, Ge, Sn, Ti, Zr, AL Ga, In, Sc, Hf, Y, La, Nb, Ta, Bi, Gd, or a combination thereof; x is the absolute value of the charge of the [MFy] ion; y is 5, 6 or 7.
Abstract:
A waveguide (116) fabrication method includes depositing a photodefinable copolymer material (14) comprising methyl methacrylate, tetrafluoropropyl methacrylate, and an epoxy monomer; fixing optical elements (10, 12) relative to the copolymer material; sending light through at least one of the optical elements and copolymer material towards the other; volatilizing uncured monomer. Another waveguide (116) fabrication method includes: fixing optical elements (110, 112) relative to each other, each having an optical surface (11, 13); providing a copolymer blob (114) over the optical surfaces with sufficient surface tension to result in the copolymer blob having a curved surface (15); sending light through each of the optical elements towards the curved surface and the other; volatilizing uncured monomer. An optical path fabrication method comprises: fixing optical elements (70, 76) relative to each other, each having an optical surface (71, 77); translating and rotating a minor (78) until aligned to optimally direct light from one of the optical elements to the other; securing the aligned minor in position.
Abstract:
An optical device structure (22) comprising a substrate (10) and at least one topographic feature. The topographic feature comprises a polymeric composite material formed from a polymerizable binder and an uncured monomer. The topographic feature has a controlled topographic profile and a controlled refractive index across the topolografic feature. The optical device structure may be a multimode waveguide device, a single mode waveguide device, an optical data storage device, thermo-optic switches, a lens, or microelectronic mechanical system.
Abstract:
A semiconductor device is presented. The device includes a semiconductor layer including silicon carbide, and having a first surface and a second surface. A gate insulating layer is disposed on a portion of the first surface of the semiconductor layer, and a gate electrode is disposed on the gate insulating layer. The device further includes an oxide disposed between the gate insulating layer and the gate electrode at a corner adjacent an edge of the gate electrode so as the gate insulating layer has a greater thickness at the corner than a thickness at a center of the layer. A method for fabricating the device is also provided.
Abstract:
A composite article (30) with at least one high integrity protective coating, the high integrity protective coating having at least one planarizing layer and at least one organic-inorganic composition barrier coating layer (10) . A method for depositing a high integrity protective coating.
Abstract:
Disclosed is an optical device structure comprising a low shrinkage mixture wherein the shrinkage of the mixture is limited after the curing of the mixture during optical device formation. Disclosed also are methods for forming optical devices which comprise the low shrinkage mixture.
Abstract:
An optoelectronic package is fabricated by a method which includes: positioning an optical device within a window of a substrate activeside up and below a top substrate surface; filling the window with an optical polymer material; planarizing surfaces of the optical polymer material and the substrate; patterning waveguide material over the optical polymer material and the substrate to form an optical interconnection path and to form a mirror to reflect light from the optical device to the interconnection path; and forming a via to expose a bond pad of the optical device.
Abstract:
PROBLEM TO BE SOLVED: To raise the output efficiency of a heat treating apparatus to improve the heating uniformity by coating the wall of a transparent reactor with a wavelength-selective layer which allows ultraviolet and visible radiations to enter the reactor but blocks the emission of infrared radiations. SOLUTION: A chamber has a wavelength-selective coating 16 to receive the radiation energy from lamp heater elements 18 and lamp reflector 20. The chamber 12 is made of an optically transparent material e.g. quartz highly allowing ultraviolet rays and/or visual lights (of about 200-800nm wavelength). The coating 16 is selected among many wavelength-selective materials which reflect infrared rays such as In-Sn-oxide (ITO), Sb-Sn-oxide, undoped Sn oxide and dichroic filters and allows lights at about 200-800nm wavelength to pass.
Abstract:
An optoelectronic package is fabricated by a method which includes: positioning an optical device within a window of a substrate active-side up and below a top substrate surface; filling the window with an optical polymer material; planarizing surfaces of the optical polymer material and the substrate; patterning waveguide material over the optical polymer material and the substrate to form an optical interconnection path; and to form a mirror to reflect light from the optical device to the interconnection path; and forming a via to expose a bond pad of the optical device.